answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Art [367]
2 years ago
13

Two vertical springs have identical spring constants, but one has a ball of mass m hanging from it and the other has a ball of m

ass 2m hanging from it.Part A If the energies of the two systems are the same, what is the ratio of the oscillation amplitudes?
Physics
1 answer:
OverLord2011 [107]2 years ago
5 0

To solve this problem we will start from the definition of energy of a spring mass system based on the simple harmonic movement. Using the relationship of equality and balance between both systems we will find the relationship of the amplitudes in terms of angular velocities. Using the equivalent expressions of angular velocity we will find the final ratio. This is,

The energy of the system having mass m is,

E_m = \frac{1}{2} m\omega_1^2A_1^2

The energy of the system having mass 2m is,

E_{2m} = \frac{1}{2} (2m)\omega_1^2A_1^2

For the two expressions mentioned above remember that the variables mean

m = mass

\omega =Angular velocity

A = Amplitude

The energies of the two system are same then,

E_m = E_{2m}

\frac{1}{2} m\omega_1^2A_1^2=\frac{1}{2} (2m)\omega_1^2A_1^2

\frac{A_1^2}{A_2^2} = \frac{2\omega_2^2}{\omega_1^2}

Remember that

k = m\omega^2 \rightarrow \omega^2 = k/m

Replacing this value we have then

\frac{A_1}{A_2} = \sqrt{\frac{2(k/m_2)}{(k/m_1)^2}}

\frac{A_1}{A_2} = \sqrt{2} \sqrt{\frac{m_1}{m_1}}

But the value of the mass was previously given, then

\frac{A_1}{A_2} = \sqrt{2} \sqrt{\frac{m}{2m}}

\frac{A_1}{A_2} = \sqrt{2} \sqrt{\frac{1}{2}}

\frac{A_1}{A_2} = 1

Therefore the ratio of the oscillation amplitudes it is the same.

You might be interested in
A 50-kg person stands 1.5 m away from one end of a uniform 6.0-m-long scaffold of mass 70.0 kg.
babymother [125]

Answer

given,

mass of the person, m = 50 Kg

length of scaffold = 6 m

mass of scaffold, M= 70 Kg

distance of person standing from one end = 1.5 m

Tension in the vertical rope = ?

now equating all the vertical forces acting in the system.

T₁ + T₂ = m g + M g

T₁ + T₂ = 50 x 9.8  + 70 x 9.8

T₁ + T₂ = 1176...........(1)

system is equilibrium so, the moment along the system will also be zero.

taking moment about rope with tension T₂.

now,

T₁ x 6 - mg x (6-1.5) - M g x 3 = 0

'3 m' is used because the weight of the scaffold pass through center of gravity.

6 T₁ = 50 x 9.8 x 4.5 + 70 x 9.8 x 3

6 T₁ = 4263

    T₁ = 710.5 N

from equation (1)

T₂ = 1176 - 710.5

 T₂ = 465.5 N

hence, T₁ = 710.5 N and T₂ = 465.5 N

4 0
2 years ago
The electric field 1.5 cm from a very small charged object points toward the object with a magnitude of 180,000 N/C. What is the
Ray Of Light [21]

Answer:

q = 4.5 nC

Explanation:

given,

electric field of small charged object, E = 180000 N/C

distance between them, r = 1.5 cm = 0.015 m

using equation of electric field

E = \dfrac{kq}{r^2}

k = 9 x 10⁹ N.m²/C²

q is the charge of the object

q= \dfrac{Er^2}{k}

now,

q= \dfrac{180000\times 0.015^2}{9\times 10^9}

      q = 4.5 x 10⁻⁹ C

      q = 4.5 nC

the charge on the object is equal to 4.5 nC

8 0
2 years ago
Read 2 more answers
Official (Closed) - Non Sensitive
Pavlova-9 [17]

Answer:

The minimum running time is 319.47 s.

Explanation:

First we find the distance covered and time taken by the train to reach its maximum speed:

We have:

Initial Speed = Vi = 0 m/s    (Since, train is initially at rest)

Final Speed = Vf = 29.17 m/s

Acceleration = a = 0.25 m/s²

Distance Covered to reach maximum speed = s₁

Time taken to reach maximum speed = t₁

Using 1st equation of motion:

Vf = Vi + at₁

t₁ = (Vf - Vi)/a

t₁ = (29.17 m/s - 0 m/s)/(0.25 m/s²)

t₁ = 116.68 s

Using 2nd equation of motion:

s₁ = (Vi)(t₁) + (0.5)(a)(t₁)²

s₁ = (0 m/s)(116.68 s) + (0.5)(0.25 m/s²)(116.68 s)²

s₁ = 1701.78 m = 1.7 km

Now, we shall calculate the end time and distance covered by train, when it comes to rest on next station.

We have:

Final Speed = Vf = 0 m/s    (Since, train is finally stops)

Initial Speed = Vi = 29.17 m/s     (The train must maintain max. speed for min time)

Deceleration = a = - 0.7 m/s²

Distance Covered to stop = s₂

Time taken to stop = t₂

Using 1st equation of motion:

Vf = Vi + at₂

t₂ = (Vf - Vi)/a

t₂ = (0 m/s - 29.17 m/s)/(- 0.7 m/s²)

t₂ = 41.67 s

Using 2nd equation of motion:

s₂ = (Vi)(t₂) + (0.5)(a)(t₂)²

s₂ = (29.17 m/s)(41.67 s) + (0.5)(- 0.7 m/s²)(41.67 s)²

s₂ = 607.78 m = 0.6 km

Since, we know that the rest of 7 km, the train must maintain the maximum speed to get to the next station in minimum time.

The remaining distance is:

s₃ = 7 km - s₂ - s₁

s₃ = 7 km - 0.6 km - 1.7 km

s₃ = 4.7 km

Now, for uniform speed we use the relation:

s₃ = vt₃

t₃ = s₃/v

t₃ = (4700 m)/(29.17 m/s)

t₃ = 161.12 s

So, the minimum running time will be:

t = t₁ + t₂ + t₃

t = 116.68 s + 41.67 s + 161.12 s

<u>t = 319.47 s</u>

5 0
2 years ago
Based on the time measurements in the table, what can be said about the speed of the car on the lower track as compared to the h
raketka [301]

Answer:

1.a

2.longer

Explanation:

7 0
2 years ago
Read 2 more answers
At one point in the rescue operation, breakdown vehicle A is exerting a force of 4000 N and breakdown vehicle B is exerting a fo
lukranit [14]

Answer:

1.) Magnitude = 5596 N

2.) Direction = 60 degrees

Explanation: You are given that the breakdown vehicle A is exerting a force of 4000 N at angle 45 degree to the vertical and breakdown vehicle B is exerting a force of 2000 N

Let us resolve the two forces into X and Y component

Sum of the forces in the X - component will be 4000 × cos 45 = 2828.43 N

Sum of the forces in the Y - component will be 2000 + ( 4000 × sin 45 )

= 2000 + 2828.43

= 4828.43 N

The resultant force R will be

R = sqrt ( X^2 + Y^2 )

Substitutes the forces at X component and Y component into the formula

R = sqrt ( 2828.43^2 + 4828.43^2 )

R = sqrt ( 31313752.53 )

R = 5595.87 N

The direction will be

Tan Ø = Y/X

Substitute Y and X into the formula

Tan Ø = 4828.43 / 2828.43

Tan Ø = 1.707106

Ø = tan^-1( 1.707106 )

Ø = 59.64 degree

Therefore, approximately, the magnitude and direction of the resultant force on the truck are 5596 N and 60 degree respectively.

8 0
2 years ago
Other questions:
  • What type of roadway has the highest number of hazards per mile?
    6·1 answer
  • Blood pressure is measured when the blood is pumping (systolic) and when the heart is resting (diastolic). When pressure reading
    10·1 answer
  • A very long, straight wire has charge per unit length 3.50×10^−10 C/m . At what distance from the wire is the electricfield magn
    11·1 answer
  • For tax and accounting purposes, corporations depreciate the value of equipment each year. One method used is called "linear dep
    10·1 answer
  • A tuning fork is sounded above a resonating tube (one end closed), which resonates at a length of 0.20 m and again at 0.60 m. If
    9·1 answer
  • A student attaches a block to a vertical spring so that the block-spring system will oscillate if the block-spring system is rel
    11·1 answer
  • A Chevrolet Corvette convertible can brake to a stop from a speed of 60.0 mi/h in a distance of 123 ft on a level roadway. What
    8·1 answer
  • Follow these steps to solve this problem: Two identical loudspeakers, speaker 1 and speaker 2, are 2.0 m apart and are emitting
    10·1 answer
  • Researchers interested in studying stress gave 150 high school seniors a very difficult math exam. After the test, the researche
    11·1 answer
  • Explica la relación entre momento de torsión y aceleración angular mencionando tres ejemplos Una varilla uniforme delgada mide 1
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!