answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Scrat [10]
2 years ago
6

A pump moves water horizontally at a rate of 0.02 m3/s. Upstream of the pump where the pipe diameter is 90 mm, the pressure is 1

20 kPa. Downstream of the pump where the pipe diameter is 30 mm, the pressure is 400 kPa. If the loss in energy across the pump due to fluid friction effects is 170 N.m/kg, determine the hydraulic efficiency of the pump.

Physics
1 answer:
victus00 [196]2 years ago
6 0

Answer:

the efficiency of hydralic is 79.88%

Explanation:

convert mm to m

1mm = (1/1000)m

diameter of pipe upsteam

d₁= 90mm= 0.09m

diameter of pipe downsteam

d₂= 30mm = 0.03m

finding velocity of upsteam

recall Q=A₁V₁

V₁=Q/A₁

V₁=3.14m/s

velocity of downsteam

V₂= Q/A₂

V₂= 28.29m/s

mass flow rate

m= ρQ

ρ is the density of water

m = 1000× 0.02

m= 20kg/s

the efficiency of hydralic is 79.88%

You might be interested in
Calculate the amount of energy produced in a nuclear reaction in which the mass defect is 0.187456 amu.
luda_lava [24]
For nuclear reactions, we determine the energy dissipated from the process from the Theory of relativity wherein energy is equal to the mass defect times the speed of light. We calculate as follows:

E = mc^2 = 0.187456 (3x10^8)^2 = 1.687x10^16 J

Hope this answers the question.
8 0
2 years ago
Read 2 more answers
There are two different size spherical paintballs and the smaller one has a diameter of 5 cm and the larger one is 9 cm in diame
slavikrds [6]

Answer:

145.8 cm³ of paint

Explanation:

d₁ = Smaller diameter paintball = 5 cm

d₂ = Larger diameter paintball = 9 cm

V₂ = Volume of larger diameter paintball

Volume of smaller diameter paintball

V_1=\frac{4}{3}\pi r_1^3\\\Rightarrow V_1=\frac{4}{3}\pi \left(\frac{d_1}{2}\right)^3\\\Rightarrow V_1=\frac{4}{24}\pi d_1^3

Similarly

V_2=\frac{4}{24}\pi d_2^3

Dividing the above two equations, we get

\frac{V_1}{V_2}=\frac{d_1^3}{d_2^3}\\\Rightarrow V_2=\frac{V_1}{\frac{d_1^3}{d_2^3}}\\\Rightarrow V_2=\frac{28}{\frac{125}{729}}\\\Rightarrow V_2=163.296\ cm^3

∴ The larger one hold 163.296 cm³ of paint

5 0
2 years ago
a block of mass m slides along a frictionless track with speed vm. It collides with a stationary block of mass M. Find an expres
shusha [124]

Answer:

Part a) When collision is perfectly inelastic

v_m = \frac{m + M}{m} \sqrt{5Rg}

Part b) When collision is perfectly elastic

v_m = \frac{m + M}{2m}\sqrt{5Rg}

Explanation:

Part a)

As we know that collision is perfectly inelastic

so here we will have

mv_m = (m + M)v

so we have

v = \frac{mv_m}{m + M}

now we know that in order to complete the circle we will have

v = \sqrt{5Rg}

\frac{mv_m}{m + M} = \sqrt{5Rg}

now we have

v_m = \frac{m + M}{m} \sqrt{5Rg}

Part b)

Now we know that collision is perfectly elastic

so we will have

v = \frac{2mv_m}{m + M}

now we have

\sqrt{5Rg} = \frac{2mv_m}{m + M}

v_m = \frac{m + M}{2m}\sqrt{5Rg}

6 0
2 years ago
A sock with a mass of 0.03 kg is stuck to the inside of a clothes dryer spins
ValentinkaMS [17]

Answer:

15.71 m/s

Explanation:

We are given;

Time; t = 0.2 s

Radius; r = 0.5 m

The circumference will give us the distance covered.

Formula for circumference is 2πr

Thus; Distance = 2πr = 2 × π × 0.5 = π

Linear speed = distance/time = π/0.2 = 15.71 m/s

5 0
2 years ago
A 4.0-mF capacitor initially charged to 50 V and a 6.0-mF capacitor charged to 30 V are connected to each other with the positiv
Juli2301 [7.4K]

Answer:

<em>The final charge on the 6.0 mF capacitor would be 12 mC</em>

Explanation:

The initial charge on 4 mF capacitor  = 4 mf  x 50 V = 200 mC

The initial Charge on 6 mF capacitor  = 6 mf x 30 V =180 mC

Since the negative ends are joined together  the total charge on both capacity would be;

q = q_{1} -q_{2}

q = 200 - 180

q = 20 mC

In order to find the final charge on the 6.0 mF capacitor we have to find the combined voltage

q = (4 x V) + (6 x V)

20 = 10 V

V = 2 V

For the final charge on 6.0 mF;

q = CV

q = 6.0 mF x 2 V

q =  12 mC

Therefore the final charge on the 6.0 mF capacitor would be 12 mC

5 0
2 years ago
Read 2 more answers
Other questions:
  • The space shuttle releases a satellite into a circular orbit 650 km above the earth. How fast must the shuttle be moving (relati
    15·2 answers
  • Which best describes what occurs when a body accelerates?
    6·1 answer
  • An object is falling from a height of 7.5 meters. At what height will its velocity be 7 meters/second?
    5·1 answer
  • The dogs of four-time Iditarod Trail Sled Dog Race champion Jeff King pull two 100-kg sleds that are connected by a rope. The sl
    11·2 answers
  • A winch is a mechanical device that is used to adjust the tension in a rope or line. A weekend sailor works the manual winch to
    13·1 answer
  • A car starting from rest moves with a constant acceleration of 10 mi/hr2 for 1 hour, then decelerates at a constant 5 mi/hr2 unt
    5·1 answer
  • The box of negligible size is sliding down along a curved path defined by the parabola y=0.4x2. When it is a A(xA = 2 m, yA = 1.
    14·2 answers
  • A student observes that for the same net force heavier objects accelerate less which statement describes the correct conclusion?
    13·2 answers
  • To practice Problem-Solving Strategy 17.1 for wave interference problems. Two loudspeakers are placed side by side a distance d
    13·1 answer
  • Irrigation channels that require regular flow monitoring are often equipped with electromagnetic flowmeters in which the magneti
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!