answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ozzi
2 years ago
8

A propagating wave in space with electric and magnetic components. These components oscillate at right angles to each other. It

may travel in a vacuum.
Physics
2 answers:
zimovet [89]2 years ago
8 0

Answer:

electromagnetic

Explanation:

Lilit [14]2 years ago
4 0

Answer: electromagnetic

Explanation:

You might be interested in
A 2.70 kg cat is sitting on a windowsill. The cat is sleeping peacefully until a dog barks at him. Startled, the cat falls from
Alchen [17]

Answer:

The speed of the cat when it hits the ground is approximately 7.586 meters per second.

Explanation:

By Principle of Energy Conservation and Work-Energy Theorem, we have that initial potential gravitational energy of the cat (U_{g}), in joules, is equal to the sum of the final translational kinetic energy (K), in joules, and work losses due to air resistance (W_{l}), in joules:

U_{g} = K +W_{l} (1)

By definition of potential gravitational energy, translational kinetic energy and work, we expand the equation presented above:

m \cdot g\cdot h = \frac{1}{2}\cdot m \cdot v^{2}+W_{l} (2)

Where:

m - Mass of the cat, in kilograms.

g - Gravitational acceleration, in meters per square second.

h - Initial height of the cat, in meters.

v - Final speed of the cat, in meters per second.

If we know that m = 2.70\,kg, g = 9.807\,\frac{m}{s^{2}}, h = 5.20\,m and W_{l} = 120\,J, then the final speed of the cat is:

v = \sqrt{\frac{2\cdot (m\cdot g\cdot h-W_{l})}{m} }

v = \sqrt{2\cdot g\cdot h-\frac{W_{l}}{m} }

v \approx 7.586\,\frac{m}{s}

The speed of the cat when it hits the ground is approximately 7.586 meters per second.

4 0
1 year ago
Zamir and Talia raced through a maze. Zamir walked 2 m north, 2 m east, 4 m south, 2 m east, 4 m north, 2 m east, 3 m south, 4 m
Alja [10]

Answer : Zamir's displacement and Talia's displacement is equal.

Explanation :

Displacement is explained to be the changing position of an object.

Zamir covers total distance 27 m and Talia covers total distance 19 m but  Zamir's initial and final position and Talia's initial and final position is same.

So, we can say that Zamir's displacement and Talia's displacement is equal.

6 0
1 year ago
Read 2 more answers
As an object in motion becomes heavier, its kinetic energy _____. A. increases exponentially B. decreases exponentially C. incre
diamong [38]

Answer:

USE SOCRACTIC IT WOULD REALLY HELP

4 0
2 years ago
Read 2 more answers
On a ring road, 12 trams are spaced at regular intervals and travel at a constant speed. How many trams need to be added to the
Sphinxa [80]

3 trams must be added

Explanation:

In this problem, there are 12 trams along the ring road, spaced at regular intervals.

Calling L the length of the ring road, this means that the space between two consecutive trams is

d=\frac{L}{12} (1)

In this problem, we want to add n trams such that the interval between the trams will decrease by 1/5; therefore the distance will become

d'=(1-\frac{1}{5})d=\frac{4}{5}d

And the number of trams will become

12+n

So eq.(1) will become

\frac{4}{5}d=\frac{L}{n+12} (2)

And substituting eq.(1) into eq.(2), we find:

\frac{4}{5}(\frac{L}{12})=\frac{L}{n+12}\\\rightarrow n+12=15\\\rightarrow n = 3

Learn more about distance and speed:

brainly.com/question/8893949

#LearnwithBrainly

4 0
1 year ago
A box sliding on a horizontal frictionless surface runs into a fixed spring, compressing it a distance x1 from its relaxed posit
inn [45]

Answer:twice of initial value

Explanation:

Given

spring compresses x_1 distance for some initial speed

Suppose v is the initial speed and k be the spring constant

Applying conservation of energy

kinetic energy converted into spring Elastic potential energy

\dfrac{1}{2}mv^2=\dfrac{1}{2}kx_1^2----1

When speed doubles

\dfrac{1}{2}m(2v)^2=\dfrac{1}{2}kx_2^2----2

divide 1 and 2

\dfrac{1}{4}=\dfrac{x_1^2}{x_2^2}

x_2=2x_1

Therefore spring compresses twice the initial value

   

7 0
1 year ago
Other questions:
  • An airplane is traveling due east with a velocity of 7.5 × 102 kilometers/hour. There is a tailwind of 30 kilometers/hour. What
    15·2 answers
  • Which is the BEST example of refraction?
    13·2 answers
  • The energy difference between the 5d and the 6s sublevels in gold accounts for its color. If this energy difference is about 2.7
    6·1 answer
  • A uniform magnetic field of 0.50 T is directed along the positive x axis. A proton moving with a speed of 60 km s enters this fi
    11·1 answer
  • A 5.00-g bullet is shot through a 1.00-kg wood block suspended on a string 2.00 m long. The center of mass of the block rises a
    7·1 answer
  • How could the combustibility of a substance influence how the substances used
    11·1 answer
  • The surface charge density on an infinite charged plane is - 2.10 ×10−6C/m2. A proton is shot straight away from the plane at 2.
    11·1 answer
  • A champion athlete can produce one horsepower (746 W) for a short period of time. The number of 16-cm-high steps a 70-kg athlete
    13·1 answer
  • A group of students prepare for a robotic competition and build a robot that can launch large spheres of mass M in the horizonta
    9·1 answer
  • A 3400 kg jet is flying at a constant speed of 170 m/s as it makes a vertical loop. At the top of the loop the pilot feels three
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!