Given :
Displacement , y = 0.75 m .
Angular acceleration ,
.
Initial angular velocity ,
.
To Find :
The value of vertical velocity after time t = 0.25 s .
Solution :
By equation of circular motion is given by :

Putting all given values we get :

Now , vertical velocity is given by :

Therefore , the numerical value of the vertical velocity of the car at time t=0.25 s is 4.90 m/s .
Hence , this is the required solution .
(u) = 20 m/s
(v) = 0 m/s
<span> (t) = 4 s
</span>
<span>0 = 20 + a(4)
</span><span>4 x a = -20
</span>
so, the answer is <span>-5 m/s^2. or -5 meter per second</span>
Using Ohm's Law, we can derived from this the value of resistance. If I=V/R, therefore, R = V/I
Substituting the values to the given,
P = Power = ?
R = Resistance = ?
V = Voltage = 2.5 V
I = Current = 750 mA
R = V/I = 2.5/ (750 x 10^-3)
R = 3.33 ohms
Calculating the power, we have P = IV
P = (750 x 10^-3)(2.5)
P = 1.875 W
The power consumption is the power consumed multiply by the number of hours. In here, we have;
1.875W x 4 hours = 7.5 watt-hours