answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sergejj [24]
3 years ago
7

A 60 kg bicyclist going 2 m/s increased his work output by 1,800 J. What was his final velocity?

Physics
2 answers:
Alinara [238K]3 years ago
6 0

<em>8 </em>was the correct answer, thanks

Bas_tet [7]3 years ago
3 0
Bicyclist initial kinetic energy is Ek=(1/2)*m*v² where m is his mass and v is his speed and that is equal to:

Ek=(1/2)*60*2²=120 J.

When we add the increased work output, we get the total kinetic energy:

Ek(total)=Ek+W= 120 J + 1800 J= 1920 J

So Ek(total)=1920 J = (1/2)*m*V² where V is the speed after the bicyclist increased his work output. So lets solve for V:

(1/2)*60*V²=1920

30*V²=1920, we divide by 30,

V²=64, and take the square root of both sides,

V=8 m/s. 

So the speed of the bicyclist after the increased work output is V=8 m/s.
You might be interested in
La luz pasa del medio A al medio B formando un ángulo de 35° con la frontera horizontal entre ambos. Si el ángulo de refracción
zaharov [31]

Answer:

Índice de refracción entre los dos medios = 1,43

Refractive index between the two media = 1.43

Explanation:

El índice de refracción entre dos medios se explica mejor entendiendo primero la refracción.

Cuando las olas se mueven de un medio a otro, a menudo experimentan un cambio de dirección con respecto al medio en el que viajan.

Por lo tanto, el índice de refracción se expresa como el seno del ángulo de incidencia dividido por el seno del ángulo de refracción.

El seno del ángulo de incidencia y la refracción utilizados en esta fórmula de índice de refracción se miden respectivamente con respecto a la vertical.

En esta pregunta Ángulo de incidencia = 35° a la horizontal = (90° - 35°) a la vertical = 55° a la vertical.

Ángulo de refracción = 35°

Índice de refracción entre los dos medios

= (Sin 55°) ÷ (Sin 35°)

= 0.8192 ÷ 0.5736

= 1.428 = 1.43 a 2 d.p.

¡¡¡Espero que esto ayude!!!

English Translation

The light passes from medium A to medium B at an angle of 35 ° with the horizontal border between the two. If the angle of refraction is also 35 °, what is the relative refractive index between the two media?

Solution

The refractive index between two media is best explained by first understanding refraction.

When waves move from one medium to another, they often experience a change in direction with respect to the medium in which they are travelling.

Hence, refractive index is expressed as the sine of angle of incidence dibided by the sine of angle of refraction.

The sine of angle of incidence and refraction used in this refractive index formula are both respectively measured with respect to the vertical.

In this question,

Angle of incidence = 35° to the horizontal = (90° - 35°) to the vertical = 55° to the vertical.

Angle of refraction = 35°

Refractive index between the two media

= (Sin 55°) ÷ (Sin 35°)

= 0.8192 ÷ 0.5736

= 1.428 = 1.43 to 2 d.p.

Hope this Helps!!!

3 0
2 years ago
A 50-n crate sits on a horizontal floor where the coefficient of static friction between the crate and the floor is 0.50 . A 20-
andreyandreev [35.5K]

The resultant static friction force is equal to 20 N to the left.

Why?

I'm assuming that you forgot to write the question of the exercise, so,  I will try to complete it:

"A 50-n crate sits on a horizontal floor where the coefficient of static friction between the crate and the floor is 0.50 . A 20-n force is applied to the crate acting to the right. What is the resulting static friction force acting on the crate?"

So, if we are going to calculate the resulting static friction force, it means that there is no movement, we must remember that the friction coefficient will give us the maximum force before the crate starts to move.

We can calculate the static friction force by using the following formula:

Fr=F(appliedforce)

Since the crate is not moving (static), the static friction force acting on the crate will be equal to the applied force.

Calculating we have:

Fr=F(appliedforce)

Fr=20N

Hence, the static friction force is equal to 20 N to the left (since the applied force is acting to the right)

So,

FrictionForce=AppliedForce

Since the static friction force is equal to the applied force, the crate does not start to move.

Have a nice day!

8 0
2 years ago
A BMX bicycle rider takes off from a ramp at a point 2.4 m above the ground. The ramp is angled at 40 degrees from the horizonta
adoni [48]

Answer:

The BMX lands 5.4 m from the end of the ramp.

Explanation:

Hi there!

The position of the BMX is given by the position vector "r":

r = (x0 + v0 · t · cos α, y0 + v0 · t · sin α + 1/2 · g · t²)

Where:

r = position vector at time t

x0 = initial horizontal position

v0 = initial velocity

α = jumping angle

y0 = initial vertical position

g = acceleration due to gravity (-9.8 m/s² considering the upward direction as positive)

Please, see the attached graphic for a better understanding of the situation. At final time, when the bicycle reaches the ground, the vector position will be "r final" (see figure). The y-component of the vector "r final" is - 2.4 m (placing the origin of the frame of reference at the jumping point). With that information, we can use the equation of the y-component of the vector "r" (see above) to calculate the time of flight. With that time, we can then obtain the x-component (rx in the figure) of the vector "r final". Then:

y = y0 + v0 · t · sin α + 1/2 · g · t²

-2.4 m = 0 m + 5.9 m/s · t · sin 40° - 1/2 · 9.8 m/s² · t²

0 = -4.9 m/s² · t² + 5.9 m/s · t · sin 40° + 2.4 m

Solving the quadratic equation:

t = 1.2 s

Now, we can calculate the x-component of the vector "r final" that is the horizontal distance traveled by the bicycle:

x = x0 + v0 · t · cos α

x = 0 m + 5.9 m/s · 1.2 s · cos 40°

x = 5.4 m

The BMX lands 5.4 m from the end of the ramp.

Have a nice day!

8 0
2 years ago
1.5 kg of air within a piston-cylinder assembly executes a Carnot power cycle with maximum and minimum temperatures of 800 K and
liraira [26]

Answer:

Explanation:

Carton cycle consists of four thermodynamic processes . The first is isothermal expansion at higher temperature , then adiabatic expansion which lowers the temperature of gas . The third process is isothermal compression at lower temperature and the last process is adiabatic compression which increases the temperature of the gas to its original temperature .

So the given process of isothermal compression must have been done at the temperature of 300K  , keeping the temperature constant .

Work done on gas at isothermal compression is equal to heat transfer .

work done on gas = 80 x 10³ J

work done on gas = n RT ln v₁ / v₂

n is number of moles v₁ and v₂ are initial and final volume

molecular weight of gas = 28.97 g

1.5 kg = 1500 / 28.97 moles

= 51.77 moles

work done on gas = n RT ln v₁ / v₂

Putting the values in the equation above

80 x 10³ = 51.78 x 8.31 x 300 x ln v₁ / .2

ln v₁ / .2 = .62

v₁ / .2 = 1.8589

v₁ = 0.37 m³

3 0
2 years ago
. During some actual expansion and compression processes in piston–cylinder devices, the gases have been observed to satisfy the
777dan777 [17]

Answer:

-4728.49 J

Explanation:

It is an Adiabatic process. For an adiabatic process, work done can be calculated as follows:

W= \fracC{V_1^{1-n}-V_2^{1-n}}{n-1}

PV^n = C\\ (350 kPa)(0.03m^3)^{1.5}=1818.65

Substitute the values:

W=(1818.65)\frac{(0.03^{(1-1.5)}-0.02^{(1-1.5)})}{(1.5-1)} = (1818.65)\frac{(5.77-7.07)}{0.5}=-4728.49

6 0
2 years ago
Other questions:
  • A spaceship which is 50,000 kilometers from the center of Earth has a mass of 3,000 kilograms. What is the magnitude of the forc
    14·2 answers
  • What is the mass of a baseball clocked moving at a speed of 105 mph or 46.9 m/s and wavelength 9.74 × 10-35m?
    8·1 answer
  • A na+ ion moves from inside a cell, where the electric potential is -72 mv, to outside the cell, where the potential is 0 v. wha
    12·2 answers
  • An overhang hollow shaft carries a 900 mm diameter pulley, whose centre is 250 mm from the centre of the nearest bearing. The we
    10·1 answer
  • When boating in shallow areas or seagrass beds, you see a mud trail in your wake where your boat has churned up the bottom. If y
    5·1 answer
  • Rock X is released from rest at the top of a cliff that is on Earth. A short time later, Rock Y is released from rest from the s
    13·1 answer
  • You throw a baseball (mass 0.145 kg) vertically upward. It leaves your hand moving at 12.0 m/s. Air resistance can be neglected.
    11·1 answer
  • Three arrows are shot horizontally. They have left the bow and are traveling parallel to the ground. Air resistance is negligibl
    5·1 answer
  • Isabella deja caer accidentalmente un bolígrafo desde su balcón mientras celebra que resolvió satisfactoriamente un problema de
    12·1 answer
  • You are working on a laboratory device that includes a small sphere with a large electric charge Q. Because of this charged sphe
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!