answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
garri49 [273]
2 years ago
10

Which of these properties of an object best quantifies its inertia: velocity, acceleration, volume, mass, or temperature?

Physics
1 answer:
LuckyWell [14K]2 years ago
3 0

Answer:

Mass

Explanation:

Inertia is essentially an object's tendency to stay in motion or at rest unless it is forced to do otherwise (pun intended). It only makes sense to me that mass would best quantify an object's inertia, because an object with more mass would be harder to move and/or stop from moving.

You might be interested in
A 2400-kg satellite is in a circular orbit around a planet. the satellite travels with a constant speed of 6670 m/s. the radius
Ad libitum [116K]
The gravitational force exerted on the satellite is called the centrifugal force, the force keeping it orbiting to the planet. Its formula is F= mass times the square of the velocity all over the radius.Thus,

F = 2400 * 6670^2 * (1/8.92x10^6) 
F = 11,970 N

I hope I was able to help you. Have a good day.
4 0
2 years ago
Read 2 more answers
A punted football is observed to have velocity components vhorizontal = 15 m/s to the right and vvertical = 1.25 m/s directed do
enot [183]

Answer:

v₀ₓ = 15 m / s,  v_{oy} = 5.2 m / s

v = 15.87 m / s ,   θ = 19.1

Explanation:

This is a projectile launch problem. The horizontal speed that is constant throughout the entire path is worth 15 m / s, instead the vertical speed changes in value due to the acceleration of gravity, let's look for the initial vertical speed

                      Vy² =v_{oy}² - 2 g y

                      v_{oy}² = v_{y}² + 2 g y

                       v_{oy} = √ (v_{y}² + 2 gy

Let's calculate

                    v_{oy} = √ (1.25² + 2 9.8 1.3)

                    v_{oy} = √ (27.04)

                    v_{oy} = 5.2 m / s

 The initial speed can be calculated by the initial speed

                   v = √ v₀ₓ² + v_{oy}²

                   v = RA (15² + 5.2²)

                   v = 15.87 m / s

We look for the angle with trigonometry

                 tan θ = voy / vox

                 θ = tan⁻¹ I'm going / vox

                θ = tan⁻¹ 5.2 / 15

                θ = 19.1

The answer is

              v₀ₓ = 15 m / s

              v_{oy} = 5.2 m / s

5 0
1 year ago
A 50.-kilogram rock rolls off the edge of a cliff. if it is traveling at a speed of 24.2 m/s when it hits the ground, what is th
ElenaW [278]

The correct answer to the question is : 29.88 m.

EXPLANATION :

As per the question, the mass of the rock m = 50 Kg.

The rock is rolling off the edges of the cliff.

The final velocity of the rock when it hits the ground v = 24 .2 m/s.

Let the height of the cliff is h.

The potential energy gained by the rock at the top of the cliff = mgh.

Here, g is known as acceleration due to gravity, and g = 9.8\ m/s^2

When the rock rolls off the edge of the cliff, the potential energy is converted into kinetic energy.

When the rock hits the ground, whole of its potential energy is converted into its kinetic energy.

The kinetic energy of the rock when it touches the ground is given as -

                Kinetic energy K.E = \frac{1}{2}mv^2.

From above we know that -

   Kinetic energy at the bottom of the cliff = potential energy at a height h

                 \frac{1}{2}mv^2=\ mgh

                ⇒ v^2=\ 2gh

                ⇒ h=\ \frac{v^2}{2g}

                ⇒ h=\ \frac{(24.2)^2}{2\times 9.8}

                ⇒ h=\ 29.88\ m

Hence, the height of the cliff is 29.88 m

             


5 0
2 years ago
Match each label to the boundary it describes. convergent boundary new crust forms transform boundary crust submerges into the m
Paraphin [41]

The answers would be:

CONVERGENT boundary - Crust submerges into the mantle

TRANSFORM boundary - neither forms nor submerges

DIVERGENT boundary - new crust forms

If you'd like to know more about the different boundaries, read on:

Convergent boundaries occur when two plates move TOWARDS each other. The event where crust submerges into the mantle is called <em><u>subduction</u></em> and this occurs when an oceanic plate and a continental plate collide. The oceanic plate is more dense and thinner than the continental plate, so it slides under it.

Transform boundaries occur when two plates slide against each other. They move slide side by side, so nothing is formed nor do they go under each other. Although, this type of boundaries create strong earthquakes.

Lastly, divergent boundaries occur when two plates move apart. The separation creates a way for magma to come up. New crust is formed when the magma that seeps out is cooled by its cooler surroundings. This is observed in the mid oceanic ridge.

7 0
2 years ago
Read 2 more answers
The internal shear force V at a certain section of a steel beam is 80 kN, and the moment of inertia is 64,900,000 . Determine th
Luba_88 [7]

Here is the complete question

The internal shear force V at a certain section of a steel beam is 80 kN, and the moment of inertia is 64,900,000 . Determine the horizontal shear stress at point H, which is located L  = 20 mm below the centriod

The missing image which is the remaining part of this question is attached in the image below.

Answer:

The horizontal shear stress at point H is  \mathbf{\tau_H \approx  42.604 \ N/mm^2}

Explanation:

Given that :

The internal shear force V  =  80 kN = 80 × 10³ N

The moment of inertia = 64,900,000

The length = 20 mm below the centriod

The horizontal shear stress  \tau can be calculated by using the equation:

\tau = \dfrac{VQ}{Ib}

where;

Q = moment of area above or below the point H

b = thickness of the beam = 10  mm

From the centroid ;

Q = Q_1 + Q_{2}

Q = A_1y_1 + A_{2}y_{2}  

Q = ( ( 70 × 10) × (55) + ( 210 × 15) (90 + 15/2) ) mm³

Q = ( ( 700) × (55) + ( 3150 ) ( 97.5)  ) mm³

Q = ( 38500 +  307125 ) mm³

Q = 345625 mm³

\tau_H = \dfrac{VQ}{Ib}

\tau_H = \dfrac{80*10^3  * 345625}{64900000*10 }

\tau_H = \dfrac{2.765*10^{10}}{649000000 }

\tau_H = 42.60400616 \ N/mm^2

\mathbf{\tau_H \approx  42.604 \ N/mm^2}

The horizontal shear stress at point H is  \mathbf{\tau_H \approx  42.604 \ N/mm^2}

7 0
2 years ago
Other questions:
  • a truss is made by hinging two uniform, 150-N rafters as shown in Fig. 5-21. They rest on an essentially frictionless floor and
    6·1 answer
  • An archer fires an arrow, which produces a muffled "thwok" as it hits a target. If the archer hears the "thwok" exactly 1 s afte
    10·1 answer
  • a 1150 kg car is on a 8.70 hill. using x-y axis tilted down the plane, what is the x-component of the normal force(unit=N)
    13·1 answer
  • Before hanging new William Morris wallpaper in her bedroom, Brenda sanded the walls lightly to smooth out some irregularities on
    6·1 answer
  • Vertically polarized light with an intensity of 36.8 lux passes through a polarizer whose transmission axis is an angle of 51.0°
    15·1 answer
  • At standard temperature and pressure, a 0.50 mol sample of H2 gas and a separate 1.0 mol sample of O2 gas have the same A. avera
    6·1 answer
  • The small ball of mass m and its supporting wire become a simple pendulum when the horizontal cord is severed. Determine the rat
    11·1 answer
  • How many air molecules are in a 13.0×12.0×10.0 ft room (28.2 L=1 ft3)? Assume atmospheric pressure of 1.00 atm, a room temperatu
    5·1 answer
  • How much does a person weigh if it takes 700 kg*m/s to move them 10 m/s<br><br> NEED ASAP
    14·1 answer
  • A 6V radio with a current of 2A is turned on for 5 minutes. Calculate the energy transferred in joules
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!