consider the right direction as positive and left direction as negative.
M = mass of the ball = 5 kg
m = mass of stone = 1.50 kg
= initial velocity of the ball before collision = 0 m/s
= initial velocity of the stone before collision = 12 m/s
= final velocity of the ball after collision = ?
= final velocity of the stone after collision = - 8.50 m/s
using conservation of momentum
M
+ m
= M
+ m
(5) (0) + (1.5) (12) = 5
+ (1.50) (- 8.50)
= 6.15 m/s
h = height gained by the ball
using conservation of energy
Potential energy gained by ball at Top = kinetic energy at the bottom
Mgh = (0.5) M
(9.8) h = (0.5) (6.15)²
h = 1.93 m
Answer:
Statement 1) False
Statement 2) False
Statement 3) True
Explanation:
The uncertainty principle states that " in a physical system certain quantities cannot be measured with random precision no matter whatever the least count of the instrument is" or we can say while measuring simultaneously the position and momentum of a particle the error involved is

Thus if we measure x component of momentum of a particle with 100% precision we cannot measure it's position 100% accurately as the error will be always there.
Statement 1 is false since measurement of x and y positions has no relation to uncertainty.
Statement 2 is false as both the momentum components can be measured with 100% precision.
Statement 3 is true as as demanded by uncertainty principle since they are along same co-ordinates.
D = V0t + 0.5at^2
Where d is the distance
V0 is the initial velocity
A is the acceleration
T is time
From the graph a = 4/3 m/s2
D = 0(3) + 0.5( 4/3 m/s2) ( 3 s)^2
D = 6 m
Explanation:
Whole system will accelerate under the action of applied force. The box will experience the force against the friction and when this force exceeds then the box will move. so
Ff = μs×m1×g
m1×a = μs×m1×g
a = μs×g
The applied force is given by
F = (m1 + m2)×a so
F = μs×g×(m1+m2)
Answer:
1.6 s
Explanation:
To find the time in which the potential difference of the inductor reaches 24V you use the following formula:

V_o: initial voltage = 60V
R: resistance = 24-Ω
L: inductance = 42H
V_L: final voltage = 24 V
You first use properties of the logarithms to get time t, next, replace the values of the parameter:

hence, after 1.6s the inductor will have a potential difference of 24V