Where are the answers? If there's anything about a white light coming from space I would choose that one.
Initial speed of the coin (u)= 0 (As the coin is released from rest)
Acceleration due to gravity (a) = g = 9.81 m/s²
Time of fall (t) = 1.5 s
From equation of motion we have:

By substituting values in the equation, we get:
v = 0 + 9.81 × 1.5
v = 14.715 m/s
Speed of the coin as it hits the ground/Final speed of the coin = 14.715 m/s
<span>50 N
The centripetal force upon an object is expressed as
F = mv^2/r
So let's substitute the known values and calculate
F = mv^2/r
F = 1.0 kg * (5.0 m/s)^2 / 0.5 m
F = 1.0 kg * 25 m^2/s^2 / 0.5 m
F = 25 kg*m^2/s^2 / 0.5 m
F = 50 kg*m/s^2
F = 50 N
So the answer is 50 N which matches one of the available choices.</span>
We really can't tell from the given information.
We don't know HOW MUCH Marv enlarged his cannonballs,
or HOW MUCH faster Seymour's balls became.
If we assume that they both, let's say, DOUBLED something,
then Seymour accomplished more, and the destructive capability
of his balls has increased more.
I say that because the destructive capability of a cannonball is
pretty much just its kinetic energy when it arrives and hits the target.
Now, we all know the equation for kinetic energy.
K.E. = (1/2) (mass) (speed-SQUARED) .
We can see right away that if Marv started shooting balls with
double the mass but at the same speed, then they have double
the kinetic energy of the old ones.
But if Seymour started shooting the same balls with double the SPEED,
then they have (2-SQUARED) as much kinetic energy as they used to.
That's 4 times as much destructive capability as before.
So we can say that when it comes to cannons and their balls and
smashing things to bits and terrorizing your opponents, if making
a bigger mess is better, then more mass is better, but more speed
is better-squared.
Answer:
113.7
Explanation:
maximum distance (s) = 8.9 km
reference intensity (I0) = 1 x 10^{-12} W/m^{2}
power of a juvenile howler monkey (p) = 63 x 10^{-6} W
distance (r) = 210 m
intensity (I) = power/area
where we assume the area of a sphere due to the uniformity of the output in all directions
area = 4π
= 4π x
= 554,176.9 m^{2}
intensity (I) = 
therefore the desired ratio I/I0 =
= 113.7