Answer:
1.77 x 10^-8 C
Explanation:
Let the surface charge density of each of the plate is σ.
A = 4 x 4 = 16 cm^2 = 16 x 10^-4 m^2
d = 2 mm
E = 2.5 x 10^6 N/C
ε0 = 8.85 × 10-12 C2/N ∙ m2
Electric filed between the plates (two oppositively charged)
E = σ / ε0
σ = ε0 x E
σ = 8.85 x 10^-12 x 2.5 x 10^6 = 22.125 x 10^-6 C/m^2
The surface charge density of each plate is ± σ / 2
So, the surface charge density on each = ± 22.125 x 10^-6 / 2
= ± 11.0625 x 10^-6 C/m^2
Charge on each plate = Surface charge density on each plate x area of each plate
Charge on each plate = ± 11.0625 x 10^-6 x 16 x 10^-4 = ± 1.77 x 10^-8 C
If a coin is dropped at a relatively low altitude, it's acceleration remains constant. However, if the coin is dropped at a very high altitude, air resistance will have a significant effect. The initial acceleration of the coin will be the greatest. As it falls down, air resistance will counteract the weight of the coin. So, the acceleration will decrease. Although the acceleration decreases, the coin still accelerates, that is why it falls faster. When the air resistance fully counters the weight of the coin, the acceleration will become zero and the coin will fall at a constant speed (terminal velocity). So, the answer should be, The acceleration decreases until it reaches 0. The closest answer is.
a. The acceleration decreases.
Answer:
Explanation:
a ) No of turns per metre
n = 450 / .35
= 1285.71
Magnetic field inside the solenoid
B = μ₀ n I
Where I is current
B = 4π x 10⁻⁷ x 1285.71 x 1.75
= 28.26 x 10⁻⁴ T
This is the uniform magnetic field inside the solenoid.
b )
Magnetic field around a very long wire at a distance d is given by the expression
B = ( μ₀ /4π ) X 2I / d
= 10⁻⁷ x 2 x ( 1.75 / .01 )
= .35 x 10⁻⁴ T
In the second case magnetic field is much less. It is due to the fact that in the solenoid magnetic field gets multiplied due to increase in the number of turns. In straight coil this does not happen .
Answer: c. increased sensitivity to ADH
Explanation:
a. a decline in the number of functional nephrons: With aging the loss of nephron occurs that can be detected by the age related decrease in the glomerular filteration rate.
b. a reduction in the GFR (glomerular filtration rate): The GFR tend to decline in older age even though there is no disease. These people are required to check with the GFR in future.
d. problems with the micturition reflex: With aging people experience problem of bladder control. This leads to leakage or incontinence of urine or urinary retention that is inability to empty the bladder.
e. loss of sphincter muscle tone: With age the sphincter tone may diminish. This results in loss of control and storage capacity. The rectal muscles or sphincter muscles get loose which lead to passage of stool before reaching the washroom.
Answer:
t=0.704s
Explanation:
A child is running his 46.1 g toy car down a ramp. The ramp is 1.73 m long and forms a 40.5° angle with the flat ground. How long will it take the car to reach the bottom of the ramp if there is no friction?
from newton equation of motion , we look for the y component of the speed and look for the x component of the speed. we can then find the resultant of the speed

Vy^2=0+2*9.8*1.73sin40.5
Vy^2=22.021
Vy=4.69m/s
Vx^2=u^2+2*9.81*cos40.5
Vy^2=25.81
Vy=5.08m/s
V=(Vy^2+Vx^2)^0.5
V=47.71^0.5
V=6.9m/s
from newtons equation of motion we know that force applied is directly proportional to the rate of change in momentum on a body.
f=force applied
v=velocity final
u=initial velocity
m=mass of the toy, 0.046
f=ma
f=m(v-u)/t
v=u+at
6.9=0+9.8t
t=6.9/9.81
t=0.704s