From the conservation of linear momentum of closed system,
Initial momentum = final momentum
Mass of the student, M = 59 kg
Mass of the laser boat, m = 42 kg
Initial speed of student + laser boat, u =0
Final speed of laser boat, v = 1.5 m/s
Final speed of the student = V
(M+m) u =M V +m v
0 = (59 kg) V + (42 kg) (1.5m/s)
V = - 1.06 m/s
Thus, the speed of the student is 1.06 m/s in the opposite direction of the motion of boat.
The question is incomplete as it does not have the options which are:
deciduous forest
taiga (boreal forest)
temperate rainforest
tropical rainforest
Answer:
Taiga (boreal forest)
Explanation:
A Biome refers to the habitat which is occupied by flora and fauna living in similar conditions. These biomes are distinguished based on many features like precipitation, temperature and many other physical factors.
In the given question, the biome which receives an annual rainfall of 35 to 100 cm annually and is mostly covered by the coniferous trees is known as "Taiga biome" which is also known as Boreal forest.
The Taiga biome is one of the largest terrestrial biomes which is present in Eurasia and North America. The biome is characterised by the conifers trees and therefore is also known as the Coniferous trees.
Thus, Taiga (boreal forest) is the correct answer.
Answer:
vB' = 0.075[m/s]
Explanation:
We can solve this problem using the principle of linear momentum conservation, which tells us that momentum is preserved before and after the collision.
Now we have to come up with an equation that involves both bodies, before and after the collision. To the left of the equal sign are taken the bodies before the collision and to the right after the collision.

where:
mA = 0.355 [kg]
vA = 0.095 [m/s] before the collision
mB = 0.710 [kg]
vB = 0.045 [m/s] before the collision
vA' = 0.035 [m/s] after the collision
vB' [m/s] after the collison.
The signs in the equation remain positive since before and after the collision, both bodies continue to move in the same direction.
![(0.355*0.095)+(0.710*0.045)=(0.355*0.035)+(0.710*v_{B'})\\v_{B'}=0.075[m/s]](https://tex.z-dn.net/?f=%280.355%2A0.095%29%2B%280.710%2A0.045%29%3D%280.355%2A0.035%29%2B%280.710%2Av_%7BB%27%7D%29%5C%5Cv_%7BB%27%7D%3D0.075%5Bm%2Fs%5D)
Answer:
The plate's surface charge density is 
Explanation:
Given that,
Speed = 9800 km/s
Distance d= 75 cm
Distance d' =15 cm
Suppose we determine the plate's surface charge density?
We need to calculate the surface charge density
Using work energy theorem


Here, final velocity is zero
...(I)
We know that,


...(II)
From equation (I) and (II)

Charge is negative for electron

Put the value into the formula


Hence, The plate's surface charge density is 
Total distance = (30/60 x 80) + (12/60 x 105) + (45/60 x 40) = 0.5 x 80 + 0.2 x 105 + 0.75 x 40 = 40 + 21 + 30 = 91 km
Average distance = total distance / time taken = 91 / (30/60 + 12/60 + 45/60) = 91/ (0.5 + 0.2 + 0.75) = 91/1.45 = 62.76 km/hr