Answer:
F = Gm1m2/r^2 where G = 6.67x10^-11, m1 =1300, m2 = 7800, r = 0.23m
F = 6.67x10^-11 *1300*7800/(0.23)^2 = 0.0127852N
Explanation:
Answer:
E=0
Explanation:
Electric field due to each thin sheet of charge=\sigma/2\varepsilon
let us say the right plate has positive charge density \varepsilonand left sheet has a negative charge density -\varepsilon .
In the region between the plates,the electric field due to each plate is in same direction,
E=\sigma/2\varepsilon-(-\sigma/2\varepsilon)
E=\sigma/\varepsilon
in the region outside the plates, the field due to the plates is in opposite directions
E=-\sigma/2\varepsilon-(-\sigma/2\varepsilon)
E=-\sigma/2\varepsilon+\sigma/2\varepsilon
E=0
The pet store would be the reference point because it is where he started and it will not move. Hope this helped.
Answer:
the efficiency of hydralic is 79.88%
Explanation:
convert mm to m
1mm = (1/1000)m
diameter of pipe upsteam
d₁= 90mm= 0.09m
diameter of pipe downsteam
d₂= 30mm = 0.03m
finding velocity of upsteam
recall Q=A₁V₁
V₁=Q/A₁
V₁=3.14m/s
velocity of downsteam
V₂= Q/A₂
V₂= 28.29m/s
mass flow rate
m= ρQ
ρ is the density of water
m = 1000× 0.02
m= 20kg/s
the efficiency of hydralic is 79.88%
Answer:
Kinetic energy is given by:
K.E. = 0.5 m v²
Susan has mass, m = 25 kg
Velocity with which Susan moves is, v = 10 m/s
Hannah has mass, m' = 30 kg
Velocity with which Hannah moves is, v' = 8.5 m/s
<u>Kinetic energy of Susan:</u>
0.5 m v² = 0.5 × 25 kg × (10 m/s)² = 1250 J
<u>Kinetic energy of Hannah:</u>
0.5 m v'² = 0.5 × 30 kg × (8.5 m/s)² = 1083.75 J
Susan's kinetic energy is <u>1250 J </u>and Hannah's kinetic energy is <u>1083.75 J</u>.
Since kinetic energy is dependent on mass and square of speed. Thus, speed has a greater effect than mass. As it is evident from the above example. Susan has greater kinetic energy due to higher speed than Hannah.