Answer:
Magnetic force, F = 0.24 N
Explanation:
It is given that,
Current flowing in the wire, I = 4 A
Length of the wire, L = 20 cm = 0.2 m
Magnetic field, B = 0.6 T
Angle between force and the magnetic field, θ = 30°. The magnetic force is given by :


F = 0.24 N
So, the force on the wire at an angle of 30° with respect to the field is 0.24 N. Hence, this is the required solution.
Answer:1. Roche limit
2.hydrogen
3.atmosphere
4.mercury
5.venus
6.when an object passes the Roche limit, the strength of gravity on the object increases. If the density of the planet is higher, then the object can break up farther away from the planet. If the density is lower, then the Roche limit is located closer to the planet
7.Farther our in the solar system, beyond the frost line, hydrogen was at a low enough temperature that it could condense. This allowed hydrogen to accumulate under gravity, eventually forming the Jovian planets
Explanation:
Answer:5.17 m/s
Explanation:
Given
let u be the speed at cliff initial point
range over cliff is 1.45 m
and range of projectile is given by


u=3.77 m/s
Conserving Energy

Kinetic energy=Kinetic energy +Potential energy gained
Let v be the initial velocity





Answer:
The velocity of the truck after the collision is 20.93 m/s
Explanation:
It is given that,
Mass of car, m₁ = 1200 kg
Initial velocity of the car, 
Mass of truck, m₂ = 9000 kg
Initial velocity of the truck, 
After the collision, velocity of the car, 
Let
is the velocity of the truck immediately after the collision. The momentum of the system remains conversed.




So, the velocity of the truck after the collision is 20.93 m/s. Hence, this is the required solution.
Answer:
Tension in the cable is T = 16653.32 N
Explanation:
Give data:
Cross section Area A = 1.3 m^2
Drag coefficient CD = 1.2
Velocity V = 4.3 m/s
Angle made by cable with horizontal =30 degree
Density 
Drag force FD is given as


Drag force = 14422.2 N acting opposite to the motion
As cable made angle of 30 degree with horizontal thus horizontal component is take into action to calculate drag force
TCos30 = F_D


T = 16653.32 N