answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lemur [1.5K]
2 years ago
10

A boat of mass 250 kg is coasting, with its engine in neutral, through the water at speed 1.00 m/s when it starts to rain with i

ncredible intensity. The rain is falling vertically, and it accumulates in the boat at the rate of 100 kg/hr . What is the speed of the boat after time 0.500 hr has passed7 Assume that the water resistance is negligible. Express your answer in meters per second. Now assume that the boat is subject to a drag force Fd due to water resistance. Is the component of the total momentum of the system parallel to the direction of motion still conserved? The boat is subject to an external force, the drag force due to water resistance, and therefore its momentum is not conserved. The drag is proportional to the square of the speed of the boat, in the form Fd = bv2 where b = 0.5 N. s2/m2. What is the acceleration of the boat just after the rain starts'7 Take the positive x axis along the direction of motion. Express your answer in meters per second per second.
Physics
1 answer:
Vera_Pavlovna [14]2 years ago
5 0

Answer:

Explanation:

1. We use the conservation of momentum for before the raining and after. And also we take into account that in 0.5h the accumulated water is

100kg/h*0.5h = 50kg

p_{b}=p_{a}\\M_{b}v_{b}=(M_{b}+m_{r})v_{a}\\v_{a}=\frac{M_{b}v_{b}}{M_{b}+m_{r}}=\frac{250kg*1\frac{m}{s}}{250kg+50kg}=0.83\frac{m}{s}

2. the momentum does not conserve because the drag force of water makes that the boat loses velocity

3. If we assume that the force of the boat before the raining is

F=ma=m\frac{v-v_{0}}{t-t_{0}}=250kg\frac{1m}{s^{2}}=250N

where we have assumed that the acceleration of the boat is 1m/s{2} just before the rain starts

And if we take the net force as

F_{net}=M_{b}a_{net}=F-F_{d}=250N-bv^{2}\\F_{net}=250N-0.5N\frac{s^{2}}{m^{2}}(1\frac{m}{s})^{2}=249.5N\\a_{net}=\frac{249.5N}{M_{b}}=\frac{249.5N}{250kg}=0.99\frac{m}{s^{2}}

where we take v=1m/s because we are taking into account tha velocity just after the rain stars.

I hope this is useful for you

regards

You might be interested in
Estimate the change in the equilibrium melting point of copper caused by a change in pressure of 10 kbar. The molar volume of co
mr Goodwill [35]

Answer:

The change in the equilibrium melting point is 4.162 K.

Explanation:

Given that,

Pressure = 10 kbar

Molar volume of copperV=8.0\times10^{-6}\ m^3

Volume of liquid V=7.6\times10^{-6}\ m^3

Latent heat of fusion L= 13.05 kJ

Melting point =1085°C

We need to calculate the change temperature

Using Clapeyron equation

\dfrac{\Delta P}{\Delta T}=\dfrac{\Delta H}{T\Delta V}

Put the value into the formula

\dfrac{1000\times10^{5}}{\Delta T}=\dfrac{13050}{(1085+273)\times(8.0-7.6)\times10^{-6}}

\Delta T=\dfrac{1000\times10^{-5}\times(1085+273)\times(8.0-7.6)\times10^{-6}}{13050}

\Delta T=4.162\ K

Hence, The change in the equilibrium melting point is 4.162 K.

5 0
2 years ago
A semi is traveling down the highway at a velocity of v = 26 m/s. The driver observes a wreck ahead, locks his brakes, and begin
Dovator [93]

Answer:

fcosθ + Fbcosθ  =Wtanθ

Explanation:

Consider the diagram shown in attachment

fx= fcosθ (fx: component of friction force in x-direction ; f: frictional force)

Fbx= Fbcosθ ( Fbx: component of braking force in x-direction ; Fb: braking force)

Wx= Wtanθ (Wx: component of weight in x-direction ; W: Weight of semi)

sum of x-direction forces = 0

fx+ Fbx=Wx

fcosθ + Fbcosθ  =Wtanθ

7 0
2 years ago
A piece of luggage is being loaded onto an airplane by way of an inclined conveyor belt. The bag, which has a mass of 15.0 kg, t
LenKa [72]

Answer:

a) W = - 318.26 J, b)  W = 0 , c) W = 318.275 J , d) W = 318.275 J , e) W = 0

Explanation:

The work is defined by

           W = F .ds = F ds cos θ

Bold indicate vectors

We create a reference system where the x-axis is parallel to the ramp and the axis and perpendicular, in the attached we see a scheme of the forces

Let's use trigonometry to break down weight

     sin θ = Wₓ / W

     Wₓ = W sin 60

     cos θ = Wy / W

      Wy = W cos 60

X axis

How the body is going at constant speed

    fr - Wₓ = 0

    fr = mg sin 60

    fr = 15 9.8 sin 60

    fr = 127.31 N

Y Axis  

    N - Wy = 0

    N = mg cos 60

    N = 15 9.8 cos 60

    N = 73.5 N

Let's calculate the different jobs

a) The work of the force of gravity is

     W = mg L cos θ

Where the angles are between the weight and the displacement is

      θ = 60 + 90 = 150

     W = 15 9.8 2.50 cos 150

     W = - 318.26 J

b) The work of the normal force

     From Newton's equations

          N = Wy = W cos 60

          N = mg cos 60

         W = N L cos 90

        W = 0

c) The work of the friction force

      W = fr L cos 0

      W = 127.31 2.50

      W = 318.275 J

d) as the body is going at constant speed the force of the tape is equal to the force of friction

      W = F L cos 0

      W = 127.31 2.50

       W = 318.275 J

e) the net force

    F ’= fr - Wx = 0

    W = F ’L cos 0

    W = 0

4 0
2 years ago
A monkey weighs 6.00 x 102 N and swings from vine to vine. As the monkey grabs a new vine, both vines make an angle of 35.0° wit
zmey [24]

Answer:

T=366.23\ N

Explanation:

Given:

  • mass of monkey, w=600\ N
  • angle of vine from the vertical, \theta=35^{\circ}

Now follow the schematic to understand the symmetry and solution via Lami's theorem.

<u>The weight of the monkey will be balanced equally by the tension in both the vines:</u>

Using Lami's Theorem:

\frac{w}{sin\ 70^{\circ}} =\frac{T}{sin\ 145^{\circ}}

\frac{600}{sin\ 70^{\circ}} =\frac{T}{sin\ 145^{\circ} }

T=366.23\ N

4 0
2 years ago
A man weighing 750 n and a woman weighing 500 n have the same momentum. what is the ratio of the man's kinetic energy km to that
miss Akunina [59]
Because weight W = M g, the ratio of weights equals the ratio of masses.

(M_m g)/ (M_w g) = [ (p^2 Man )/ (2 K_man)] / [ (p^2 Woman )/ (2 K_woman)

but p's are equal, so

K_m/K_m = (M_w g)/(M_m g) = W_woman / W_man = 450/680 = 0.662
4 0
2 years ago
Other questions:
  • As a 5.0 x 10^2 newton basketball player jumps from the floor up toward the basket, the magnitude of the force of her feet on th
    5·2 answers
  • A bike first accelerates from 0.0 m/s to 5.0 m/s in 4.5s, then continues at this constant speed for another 4.5 s. What is the t
    13·2 answers
  • A rocket starts from rest and moves upward from the surface of the earth. for the first 10.0 s of its motion, the vertical accel
    15·1 answer
  • A circular surface with a radius of 0.057 m is exposed to a uniform external electric field of magnitude 1.44 × 104 N/C. The mag
    8·1 answer
  • Materials Science and Engineering is the study of material behavior &amp; performance and how this is simultaneously related to
    14·1 answer
  • Umar has two copper pans, each containing 500cm3 of water. Pan A has a mass of 750g and pan B has a mass of 1.5kg. Which pan wil
    12·1 answer
  • A pitching machine is programmed to pitch baseballs horizontally at a speed of 87 mph . The machine is mounted on a truck and ai
    8·1 answer
  • An engineer wants to design an oval racetrack such that 3.20 × 10 3 lb racecars can round the exactly 1000 ft radius turns at 10
    12·1 answer
  • If an irregularly shaped object (such as a wrench) is dropped from rest in a classroom and feels no air resistance, it will:
    6·1 answer
  • Two strings are respectively 1.00 m and 2.00 m long. Which of the following wavelengths, in meters, could represent harmonics pr
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!