As density = mass/volume
So
Mass = density *volume
Mass = 25,365.4 * 2.7 = 68,486.58 g
<span>Mass of the granite monument to the nearest tenth
= 68,485.6 g</span>
Answer: The light bulb produces the continuous light. At minimum wavelength the spectrum have maximum intensity.
Explanation:
According to Wein's displacement law, the wavelength is inversely proportional to the temperature.
The intensity depends on the frequency. The frequency is inversely proportional to the wavelength.
Therefore, when the temperature of the light bulb will be maximum then the wavelength will be minimum. At minimum wavelength the spectrum have maximum intensity.
Answer:
Explanation:
Given
Weight of car 
mass of car 
velocity of car 
radius 
(a)Centripetal acceleration is given by



(b)Force that provide centripetal acceleration



(c)Friction force between car and tires is given by

where
=coefficient of static friction
N=normal reaction
Centripetal force will balance the friction force



Answer:
v=5.86 m/s
Explanation:
Given that,
Length of the string, l = 0.8 m
Maximum tension tolerated by the string, F = 15 N
Mass of the ball, m = 0.35 kg
We need to find the maximum speed the ball can have at the top of the circle. The ball is moving under the action of the centripetal force. The length of the string will be the radius of the circular path. The centripetal force is given by the relation as follows :

v is the maximum speed

Hence, the maximum speed of the ball is 5.86 m/s.
Answer:
θ=108rad
t =10.29seconds
α=-8.17rad/s²
Explanation:
Given that
At t=0, Wo=24rad/sec
Constant angular acceleration =30rad/s²
At t=2, θ=432rad as it try to stop because the circuit break
Angular motion
W=Wo+αt
θ=Wot+1/2αt²
W²=Wo²+2αθ
We need to find θ between 0sec to 2sec when the wheel stop
a. θ=Wot+1/2αt²
θ=24×2+1/2×30×2²
θ=48+60
θ=108rad.
b. W=Wo+αt
W=24+30×2
W=84rad/s
This is the final angular velocity which is the initial angular velocity when the wheel starts to decelerate.
Wo=84rad/sec
W=0rad/s, because the wheel stop at θ=432rad
Using W²=Wo²+2αθ
0²=84²+2×α×432
-84²=864α
α=-8.17rad/s²
It is negative because it is decelerating
Now, time taken for the wheel to stop
W=Wo+αt
0=84-8.17t
-84=-8.17t
Then t =10.29seconds.
a. θ=108rad
b. t =10.29seconds
c. α=-8.17rad/s²