Answer:
B = 0.046T
Explanation:
given
size of the screen = 51.2cm
distance from center = 11.1cm
region of magnetic field = 1.00cm
V= 22000V= 22kV
Velocity =
(distance between start point and end point, regardless of the route traveled) / (time spent traveling).
That distance (called the "displacement"), is 10 meters, and almost exactly 1 hour is almost exactly 3,600 seconds. So the numerical value of the velocity during that time is
(10) / (3,600) = almost exactly 0.00278 m/s
= 2.78 x 10^-3 m/s.
The random variable in this experiment is a Continuous random variable.
Option D
<u>Explanation</u>:
The continuous random variable is random variable where the data can take infinite variables. For example random variable is taken for measuring "speed of automobiles" on the highways. The radar instrument depicts time taken by automobile in particular what speed. They are the generalization of discrete random variables not the real numbers as a random data is created. It gives infinite sets of all possible outcomes. It is obvious that outcomes of the instrument depend on some "physical variables" those are not predictable as depends on the situation.
Answer:
5308.34 N/C
Explanation:
Given:
Surface density of each plate (σ) = 47.0 nC/m² = 
Separation between the plates (d) = 2.20 cm
We know, from Gauss law for a thin sheet of plate that, the electric field at a point near the sheet of surface density 'σ' is given as:

Now, as the plates are oppositely charged, so the electric field in the region between the plates will be in same direction and thus their magnitudes gets added up. Therefore,

Now, plug in
for 'σ' and
for
and solve for the electric field. This gives,

Therefore, the electric field between the plates has a magnitude of 5308.34 N/C
Answer:
<em>The Answer is both B and C, </em><em>since it has same options from the question given. Gear, slow her vehicle in a lower</em>
Explanation:
<em>The use of a lower gear in a vehicle helps a person to control their speed limits, when approaching a hill. it also saves the brakes too, using the brakes down a hill can overheat the gear and causes brake failures</em>
<em>By changing in into a lower gear and also letting the engine to do the brake work in a vehicle, the engine will absorb a force and slow the vehicle down, but in most cases brakes can be applied but with lesser pressure.</em>
<em>In this case Stella need to slow down by applying her lower gear down a hill to avoid accidents on the road, by controlling her speed limits and for safety precaution</em>