Answer:
D = 30.625 m
Explanation:
given,
Speed of the climber = 1.3 m/s
time = 2.5 s
acceleration due to gravity = 9.8 m/s²
initial speed of the kit = 1.3 m/s
velocity of the kit after 2.5 s
using equation of motion
v = u + a t
v = 1.3 + 9.8 x 2.5
v = 25.8 m/s
distance travel by the kit in 2.5 s
v² = u² + 2 g h
25.8² = 1.3² + 2 x 9.8 x h
19.6 h = 663.95
h = 33.875 m
distance travel by the rock climber in 2.5 s
distance = speed of climber x time
h' = 1.3 x 2.5
h' = 3.25 m
Distance between kit and rock climber
D = h - h'
D = 33.875 - 3.25
D = 30.625 m
The kit is 30.625 m below climber.
12.5 times 14 and convert to meters its 1.75 meters per second
Answer:
velocity = 472 m/s
velocity = 52.4 m/s
Explanation:
given data
steady rate = 0.750 m³/s
diameter = 4.50 cm
solution
we use here flow rate formula that is
flow rate = Area × velocity .............1
0.750 =
× (4.50×
)² × velocity
solve it we get
velocity = 472 m/s
and
when it 3 time diameter
put valuer in equation 1
0.750 =
× 3 × (4.50×
)² × velocity
velocity = 52.4 m/s
Answer:
3.43 m
Explanation:
f = 100 mm
u = - 103 mm
Let v be the distance between the screen and the lens of the projector.
Use lens equation
1 / f = 1 / v - 1 / u
1 / 100 = 1 / v + 1 / 103
1 / v = 1 / 100 - 1 / 103
1 / v = (103 - 100) / (100 x 103)
1 / v = 3 / 10300
v = 3433.33 mm = 3.43 m
Answer:
So instantaneous velocity after 9 sec will be 88.2 m/sec
Explanation:
We have given time t = 9 sec
As the object is released from rest so its initial velocity u = 0 m/sec
We have to find its final velocity v
Acceleration due to gravity 
From first equation of motion we know that 

So instantaneous velocity after 9 sec will be 88.2 m/sec