answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ronch [10]
2 years ago
12

A proton is released from rest at the positive plate of a parallel-plate capacitor. It crosses the capacitor and reaches the neg

ative plate with a speed of 47000 m/s. The experiment is repeated with a He ion (charge e, mass 4 u).
What is the ion's speed at the negative plate?
Physics
1 answer:
WINSTONCH [101]2 years ago
7 0

Answer:

=2,012,319.36 \ m/s

Explanation:

-The only relevant force is the electrostatic force

-The formula for the electrostatic force is:

F = Eq

E is the electric field and q is the magnitude of the charge.

#Since the electric field is the same in both cases, and the charge of the protons and electrons have the same magnitude, you can state that the magnitude of the electric forces acting in both proton and electron are the same.

F_e = F_p\\\\F_e= Force \ on \ electron\\F_p = Force \ on \ proton

-Applying Newton's 2nd Law:

F=ma

F_e=M_ea_e

F_p=M_pa_p

#equate the two forces:

F_e = F_p\\\\M_ea_e=M_pa_p\\\\a_e=\frac{M_pa_p}{M_e}

#The equations for velocity in uniform acceleration:

V_f^2=V_o^2+2ad\\\\V_o^2=0\\\\\therefore V_f^2=2ad

#For the proton:

V_f^2=2a_pd\\\\a_p=\frac{V_f^2}{2d}\\\\a_p=\frac{47000m/s)^2}{2d}

#For the electron:

V_f^2=2{a_e}^2\times 2d\\\\A_e=M_p\times A_p/M_e\\\\V_f^2=M_p\times (47000m/s)^2/2d\times2d/M_e\\\\V_f^2=M_p\times (47000m/s)^2/M_e\\\\V_f=47000m/s\times\sqrt{\frac{M_p}{M_e}}

The mass values of the proton and electron are:

M_p=1.67\times 10^{-27} kg\\\\M_e=9.11\times10^{-31}kg

The speed of the ion is therefore calculated as:

V_f=47000m/s\times\sqrt{\frac{M_p}{M_e}}\\\\=47000m/s\times\sqrt{\frac{1.67\times10^{-27}}{9.11\times10^{-31}}\\\\=2,012,319.36 \ m/s

Hence, the ion's speed at the negative plate is =2,012,319.36 \ m/s

You might be interested in
A 145-g baseball is thrown so that it acquires a speed of 25 m/s. What was the net work done on the ball to make it reach this s
inysia [295]

When the ball has left your hand and is flying on its own, its kinetic energy is

KE = (1/2) (mass) (speed²)

KE = (1/2) (0.145 kg) (25 m/s)²

KE = (0.0725 kg) (625 m²/s²)

<em>KE = 45.3 Joules</em>

If the baseball doesn't have rocket engines on it, or a hamster inside running on a treadmill that turns a propeller on the outside, then there's only one other place where that kinetic energy could come from:  It MUST have come from the hand that threw the ball.  The hand would have needed to do  <em>45.3 J</em>  of work on the ball before releasing it.

6 0
2 years ago
A quarterback throws a football with an initial velocity v at an angle θ above horizontal. Assume the ball leaves the quarterbac
Maru [420]
(a) The y-component or vertical velocity is calculated using:
Vy = Vsin(∅)

(b) The x-component or horizontal velocity is calculated using:
Vx = Vcos(∅)
6 0
1 year ago
What best describes myotibrils
krok68 [10]
Myofibrils are composed of long proteins such as actin, myosin, and titin, and other proteins that hold them together. These proteins are organized into thin filaments and thick filaments, which repeat along the length of the myofibril in sections called sarcomeres. Muscles contract by sliding the thin (actin) and thick (myosin) filaments along each other.
8 0
1 year ago
The length of a 60 W, 240 Ω light bulb filament is 60 cm Remembering that the current in the filament is proportional to the ele
faust18 [17]

Answer:

Finally current will be

i = 0.35 A

Explanation:

As we know that power of the bulb is given by the formula

P = \frac{V^2}{R}

now we have

P = 60 W

R = 240 ohm

so we have

60 = \frac{V^2}{240}

V = 120 Volts

now the current in the bulb is given as

i = \frac{V}{R}

i = \frac{120}{240} = 0.5 A

now when length of the filament is double

so the resistance of the wire also gets double

so we have

P = \frac{V^2}{R}

60 = \frac{V^2}{480}

V = 169.7 volts

now the current in the bulb is given as

V = i R

169.7 = i(480)

i = 0.35 A

8 0
1 year ago
The position function x(t) of a particle moving along an x axis is x = 4.00 - 6.00t2, with x in meters and t in seconds. (a) at
elena-14-01-66 [18.8K]

The position function x(t) of a particle moving along an x axis is x=4.00 - 6.00t^2

a) The point at which particle stop, it's velocity = 0 m/s

  So dx/dt = 0

        0 = 0- 12t = -12t

  So when time t= 0, velocity = 0 m/s

    So the particle is starting from rest.

At t = 0 the particle is (momentarily) stop

b) When t = 0

 x=4.00 - 6.00*0^2 = 4m

SO at x = 4m the particle is (momentarily) stop

c) We have x=4.00 - 6.00t^2

   At origin x = 0

  Substituting

         0 = 4.00 - 6.00t^2\\ \\ t^2 = \frac{2}{3}

         t = 0.816 seconds or t = - 0.816 seconds

So when  t = 0.816 seconds and t = - 0.816 seconds, particle pass through the origin.

5 0
2 years ago
Other questions:
  • Which two statements are true about all generators?
    11·2 answers
  • A dinner plate falls vertically to the floor and breaks up into three pieces, which slide horizontally along the floor. immediat
    11·2 answers
  • An experiment is conducted in which red light is diffracted through a single slit. Listed below are alterations made, one at a t
    6·1 answer
  • An orienteer runs 400m directly east and then 500m to the northeast (at a 45 degree andle from due east and from due north). Pro
    5·1 answer
  • A Chevrolet Corvette convertible can brake to a stop from a speed of 60.0 mi/h in a distance of 123 ft on a level roadway. What
    8·1 answer
  • A(n) 71.1 kg astronaut becomes separated from the shuttle, while on a space walk. She finds herself 70.2 m away from the shuttle
    15·1 answer
  • A disk of known radius and rotational inertia can rotate without friction in a horizontal plane around its fixed central axis. T
    7·1 answer
  • Think of something from everyday life that follows a two-dimensional path. It could be a kicked football, a bus that's turning a
    13·1 answer
  • ; (b) A uniform beam 150cm long weighs 3.5kg and
    15·1 answer
  • When 999mm is added to 100m ______ is the result​
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!