Answer:
hmax = 1/2 · v²/g
Explanation:
Hi there!
Due to the conservation of energy and since there is no dissipative force (like friction) all the kinetic energy (KE) of the ball has to be converted into gravitational potential energy (PE) when the ball comes to stop.
KE = PE
Where KE is the initial kinetic energy and PE is the final potential energy.
The kinetic energy of the ball is calculated as follows:
KE = 1/2 · m · v²
Where:
m = mass of the ball
v = velocity.
The potential energy is calculated as follows:
PE = m · g · h
Where:
m = mass of the ball.
g = acceleration due to gravity (known value: 9.81 m/s²).
h = height.
At the maximum height, the potential energy is equal to the initial kinetic energy because the energy is conserved, i.e, all the kinetic energy was converted into potential energy (there was no energy dissipation as heat because there was no friction). Then:
PE = KE
m · g · hmax = 1/2 · m · v²
Solving for hmax:
hmax = 1/2 · v² / g
When the Skydiver jump out a plane, his Potential Energy is being converted or transform into Kinetic energy due to gravity. Hope this helps
Answer:
a) W = 643.5 J, b) W = -427.4 J
Explanation:
a) Work is defined by
W = F. x = F x cos θ
in this case they ask us for the work done by the external force F = 165 N parallel to the ramp, therefore the angle between this force and the displacement is zero
W = F x
let's calculate
W = 165 3.9
W = 643.5 J
b) the work of the gravitational force, which is the weight of the body, in ramp problems the coordinate system is one axis parallel to the plane and the other perpendicular, let's use trigonometry to decompose the weight in these two axes
sin θ = Wₓ / W
cos θ = Wy / W
Wₓ = W sinθ = mg sin θ
Wy = W cos θ
the work carried out by each of these components is even Wₓ, it has to be antiparallel to the displacement, so the angle is zero
W = Wₓ x cos 180
W = - mg sin 34 x
let's calculate
W = -20 9.8 sin 34 3.9
W = -427.4 J
The work done by the component perpendicular to the plane is ero because the angle between the displacement and the weight component is 90º, so the cosine is zero.