Answer:

Explanation:
The equation that relates heat Q with the temperature change
of a substance of mass <em>m </em>and specific heat <em>c </em>is
.
We want to calculate the final temperature <em>T, </em>so we have:

Which for our values means (in this case we do not need to convert the mass to Kg since <em>c</em> is given in g also and they cancel out, but we add
to our temperature in
to have it in
as it must be):

Answer:
The average rate of energy transfer to the cooker is 1.80 kW.
Explanation:
Given that,
Pressure of boiled water = 300 kPa
Mass of water = 3 kg
Time = 30 min
Dryness friction of water = 0.5
Suppose, what is the average rate of energy transfer to the cooker?
We know that,
The specific enthalpy of evaporate at 300 kPa pressure


We need to calculate the enthalpy of water at initial state


We need to calculate the enthalpy of water at final state
Using formula of enthalpy

Put the value into the formula


We need to calculate the rate of energy transfer to the cooker
Using formula of rate of energy

Put the value into the formula


Hence, The average rate of energy transfer to the cooker is 1.80 kW.
The horizontal component is calculated as:
Vhorizontal = V · cos(angle)
In your case Vhoriontal = 16 · cos(40) = 12.3 m/s
Answer: 12.3 m/s
Answer:
Mass will be 4.437 kg
Explanation:
We have given force constant k = 7 N/m
Time period of oscillation T = 5 sec
So angular frequency 
We know that angular frequency is given by


Squaring both side

m = 4.437 kg
Answer:
<em>B</em><em>.</em><em> </em><em>Kinetic</em><em> </em><em>friction</em><em> </em>
Explanation:
This is definitely the correct answer because kinetic friction acts when an object is in motion and it allows the object to move without slipping, etc
<em>ALSO</em><em>,</em><em> </em><em>PLEASE DO</em><em> </em><em>MARK</em><em> </em><em>ME AS</em><em> </em><em>BRAINLIEST UWU</em><em> </em>
<em>Bonne</em><em> </em><em>journée</em><em> </em><em>;</em><em>)</em><em> </em>