answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tia_tia [17]
2 years ago
5

A 4.00-Ω resistor, an 8.00-Ω resistor, and a 24.0-Ω resistor are connected together. (a) What is the maximum resistance that can

be produced using all three resistors? (b) What is the minimum resistance that can be produced using all three resistors? (c) How would you connect these three resistors to obtain a resistance of 10.0 Ω? (d) How would you connect these three resistors to obtain a resistance of 8.00 Ω?
Physics
1 answer:
Pani-rosa [81]2 years ago
7 0

Answer:a) 4+8+24=36

B) 1/4+1/8+1/24=10

C) yu will connect them in parallel connection.

D) you will connect two in parallel then the remaining one in series to the ons connected in parallel.

Explanation:

You might be interested in
A hot–air balloon is moving at a speed of 10 meters/second in the +x–direction. The balloonist throws a brass ball in the +x–dir
IrinaVladis [17]
The ball has an initial speed of 10m/s. This is because it is moving with the balloon. Now the balloonist throws the ball 4m/s with respect to himself, so it means that he gives the ball a extra push of 4m/s, so the total speed is 14m/s. Since it takes 30 seconds to reach the ground, the distance travelled is 14*30=420m.
7 0
2 years ago
a block of mass m slides along a frictionless track with speed vm. It collides with a stationary block of mass M. Find an expres
shusha [124]

Answer:

Part a) When collision is perfectly inelastic

v_m = \frac{m + M}{m} \sqrt{5Rg}

Part b) When collision is perfectly elastic

v_m = \frac{m + M}{2m}\sqrt{5Rg}

Explanation:

Part a)

As we know that collision is perfectly inelastic

so here we will have

mv_m = (m + M)v

so we have

v = \frac{mv_m}{m + M}

now we know that in order to complete the circle we will have

v = \sqrt{5Rg}

\frac{mv_m}{m + M} = \sqrt{5Rg}

now we have

v_m = \frac{m + M}{m} \sqrt{5Rg}

Part b)

Now we know that collision is perfectly elastic

so we will have

v = \frac{2mv_m}{m + M}

now we have

\sqrt{5Rg} = \frac{2mv_m}{m + M}

v_m = \frac{m + M}{2m}\sqrt{5Rg}

6 0
2 years ago
You are piloting a helicopter which is rising vertically at a uniform velocity of 14.70 m/s. When you reach 196.00 m, you see Ba
Cloud [144]

Answer:

The ball reaches Barney  head in  t = 8 \ s

Explanation:

From the question we are told that

 The rise velocity is  v  =  14.70 \  m/s

  The height considered is h =  196 \  m

   The horizontal velocity of the large object is  v_h  =  8.50 \  m/s

   

Generally from kinematic equation  

   s = ut + \frac{1}{2} gt^2

Here s is the distance of the object from Barney head ,

        u is the velocity of the object along the vertical axis which is equal but opposite to the velocity of the helicopter

So  

     u = -14.7 m/s

So

    196  = -14.7 t  + \frac{1}{2} * 9.8 * t^2

=  4.9 t^2 - 14.7t - 196 = 0

Solving the above equation using quadratic formula  

    The value of  t obtained is  t = 8 \ s

6 0
2 years ago
A visitor to the observation deck of a skyscraper manages to drop a penny over the edge. As the penny falls faster, the force du
pentagon [3]
If a coin is dropped at a relatively low altitude, it's acceleration remains constant. However, if the coin is dropped at a very high altitude, air resistance will have a significant effect. The initial acceleration of the coin will be the greatest. As it falls down, air resistance will counteract the weight of the coin. So, the acceleration will decrease. Although the acceleration decreases, the coin still accelerates, that is why it falls faster. When the air resistance fully counters the weight of the coin, the acceleration will become zero and the coin will fall at a constant speed (terminal velocity). So, the answer should be, The acceleration decreases until it reaches 0. The closest answer is.
a. The acceleration decreases.
8 0
2 years ago
Read 2 more answers
A 3.00-kg ball swings rapidly in a complete vertical circle of radius 2.00 m by a light string that is fixed at one end. The bal
Setler [38]

Answer

given,

mass of the ball = 3 kg

swing in vertical circle with radius = 2 m

   work done by the gravity = ?          

   work done by the tension = ?            

Work done by the gravity = - m g Δh            

 Δ h = 2 + 2 = 4 m                                                                

Work done by the gravity =- 3 \times 9.8 \times 4

                                           = -117.6 J                  

work done by gravity is equal to -117.6 J            

Work done by tension will be equal to zero.        

Zero because tension is always perpendicular to velocity

work done by tension is equal to 0 J                          

7 0
2 years ago
Other questions:
  • A trooper is moving due south along the freeway at a speed of 23 m/s. at time t = 0, a red car passes the trooper. the red car m
    12·2 answers
  • Peter often gets sore muscles in the back of his lower legs from jogging what flexibility exercise could help him
    7·1 answer
  • Neglecting the effect of air resistance a stone dropped off a 175-m high building lands on the ground in: A)3s B)4s C)6s D)18s E
    12·1 answer
  • At constant temperature, the volume of the container that a sample of nitrogen gas is in is doubled. As a result the pressure of
    5·1 answer
  • As in the video, we apply a charge +Q to the half-shell that carries the electroscope. This time, we also apply a charge –Q to t
    10·2 answers
  • A car is driving around a banked curve, with the road surface at an angle of 10.0º. If the radius of curvature of the road is 30
    14·1 answer
  • A 2.5-L tank initially is empty, and we want to fill it with 10 g of ammonia. The ammonia comes from a line with saturated vapor
    14·1 answer
  • When Brett and Will ride the​ carousel, Brett always selects a horse on the outside​ row, whereas Will prefers the row closest t
    7·1 answer
  • which has a greater kinetic energy, a bowling ball that has a mass of 5kg travelling at 6m/s, or a ship that has a mass of 12000
    15·1 answer
  • 20 points please help!!
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!