Answer:
The other two small angles are 45° each
Explanation:
Given data in the problem:
The triangle is a right triangle
thus,
one of the angle is 90°
now,
let the other two angles be x and y
thus,
it is given that:
x = 2y - 45°
also in a triangle
sum of all the angles = 180°
thus,
x + y + 90° = 180°
or
x + y = 90°
now, substituting the value of x from the above relation between x and y, we get
2y - 45° + y = 90°
or
3y = 135°
or
y = 45°
also,
x = 2y - 45°
or
x = 2 × (45°) - 45°
or
x = 45°
hence, <u>the other two small angles are 45° each</u>
Answer: The comet's average distance from the sun is 17.6AU
Explanation:
From Kepler's 3rd Law, P^2=a^3
Where P is period in years
and a is length of semi-major axis or the average distance of the comet to the sun.
Given the orbital period to be 74 years
74^2 =a^3
5476 = a^3
Cube root of 5476 =a
17.626 = a
Approximately a= 17.6 AU
Answer:
Minimum capacitance = 200 μF
Explanation:
From image B attached, we can calculate the current flowing through the capacitors.
Thus;
Since V=IR; I = V/R = 5/500 = 0.01 A
Maximum charge in voltage is from 5V to 4.9V. Thus, each capacitor will have 2.5V. Hence, change in voltage(Δv) for each capacitor will be ; Δv = 0.05 V
So minimum capacitance will be determined from;
i(t) = C(dv/dt)
So, C = i(t)(Δt/Δv) = 0.01[0.001/0.05]
C = 0.01 x 0.0002 = 200 x 10^(-6) F = 200 μF
Answer:
57.6Joules
Explanation:
Rotational kinetic energy of a body can be determined using the expression
Rotational kinetic energy = 1/2Iω²where;
I is the moment of inertia around axis of rotation. = 5kgm/s²
ω is the angular velocity = ?
Note that torque (T) = I¶ where;
¶ is the angular acceleration.
I is the moment of inertia
¶ = T/I
¶ = 3.0/5.0
¶ = 0.6rad/s²
Angular acceleration (¶) = ∆ω/∆t
∆ω = ¶∆t
ω = 0.6×8
ω = 4.8rad/s
Therefore, rotational kinetic energy = 1/2×5×4.8²
= 5×4.8×2.4
= 57.6Joules
Answer : The correct option is, (d) 
Explanation :
In this problem we assumed that heat given by the hot body is equal to the heat taken by the cold body.


where,
= specific heat of copper = 
= specific heat of water = 
= mass of copper = 120 g
= mass of water = 300 g
= final temperature of mixture = 
= initial temperature of copper = ?
= initial temperature of water =
Now put all the given values in the above formula, we get:


Therefore, the temperature of the kiln was, 