answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
disa [49]
2 years ago
10

A 5 kg block moves with a constant speed of 10 ms to the right on a smooth surface where frictional forces are considered to be

negligible.
It passes through a 2.0 m rough section of the surface where friction is not negligible, and the coefficient of kinetic friction between the block and the rough section μk is 0.2.

What is the change in the kinetic energy of the block as it passes through the rough section?
Physics
2 answers:
nirvana33 [79]2 years ago
5 0

Answer:

Work done, W = 19.6 J

Explanation:

It is given that,

Mass of the block, m = 5 kg

Speed of the block, v = 10 m/s

The coefficient of kinetic friction between the block and the rough section is 0.2

Distance covered by the block, d = 2 m

As the block passes through the rough part, some of the energy gets lost and this energy is equal to the work done by the kinetic energy.

W=\mu_kmgd

W=0.2\times 5\times 9.8\times 2

W = 19.6 J

So, the change in the kinetic energy of the block as it passes through the rough section is 19.6 J. Hence, this is the required solution.

Sladkaya [172]2 years ago
3 0

Answer:

19.6 J

Explanation:

mass of block, m = 5 kg

initial velocity, u = 10 m/s

coefficient of friction, μk = 0.2

distance, s = 2 m

Let v be the velocity after covering the friction surface

use third equation of motion

v² = u² + 2as

v² = 10² - 2 x 0.2 x 9.8 x 2

v² = 100 - 7.84

v = 9.6 m/s

initial kinetic energy, ki = 0.5 x m x u²

Ki = 0.5 x 5 x 10 x 10 = 250 J

final kinetic energy

kf = 0.5 x m x v² = 0.5 x 5 x 9.6 x 9.6 = 230.4 J

Change in kinetic energy, K =  Kf - Ki = 250 - 230.4 = 19.6 J

You might be interested in
An object of mass M is dropped near the surface of Earth such that the gravitational field provides a constant downward force on
marysya [2.9K]

Answer:

The answer is: c. It does not move

Explanation:

Because the gravitational force is characterized by being an internal force within the Earth-particle system, in this case, the object of mass M. And since in this system there is no external force in the system, it can be concluded that the center of mass of the system will not move.

6 0
1 year ago
the temperature of a 2.0-kg increases by 5*c when 2,000 J of thermal energy are added to the block. What is the specific heat of
nata0808 [166]
To calculate the specific heat capacity of an object or substance, we can use the formula

c = E / m△T

Where
c as the specific heat capacity,
E as the energy applied (assume no heat loss to surroundings),
m as mass and
△T as the energy change.

Now just substitute the numbers given into the equation.

c = 2000 / 2 x 5
c = 2000/ 10
c = 200

Therefore we can conclude that the specific heat capacity of the block is 200 Jkg^-1°C^-1
3 0
2 years ago
The diagram shows a heater above a thermometer. The thermometer bulb is in the position shown. Which row shows how the heat ener
balu736 [363]

Answer:

The diagram shows a heater above a thermometer. The thermometer bulb is in the position shown. How the heat

5 0
2 years ago
A box with a mass of 100.0 kg slides down a ramp with a 50 degree angle. What is the weight of the box? N What is the value of t
nadya68 [22]

1) weight of the box: 980 N

The weight of the box is given by:

W=mg

where m=100.0 kg is the mass of the box, and g=9.8 m/s^2 is the acceleration due to gravity. Substituting in the formula, we find

W=(100.0 kg)(9.8 m/s^2)=980 N


2) Normal force: 630 N

The magnitude of the normal force is equal to the component of the weight which is perpendicular to the ramp, which is given by

N=W cos \theta

where W is the weight of the box, calculated in the previous step, and \theta=50^{\circ} is the angle of the ramp. Substituting, we find

N=(980 N)(cos 50^{\circ})=630 N


3) Acceleration: 7.5 m/s^2

The acceleration of the box along the ramp is equal to the component of the acceleration of gravity parallel to the ramp, which is given by

a_p = g sin \theta

Substituting, we find

W_p = (9.8 m/s^2)(sin 50^{\circ})=7.5 m/s^2

5 0
2 years ago
Suzette had prepared the graph below to add to her lab
Charra [1.4K]

Answer:

A title

Explanation:

Because this is middle school.

4 0
1 year ago
Read 2 more answers
Other questions:
  • A ball having a mass of 0.20 kilograms is placed at a height of 3.25 meters. If it is dropped from this height, what will be the
    10·2 answers
  • A bird has a mass of 0.8 kg and flies at a speed of 11.2 m/s. How much kinetic energy does the bird have?
    5·2 answers
  • A satellite revolves around a planet at an altitude equal to the radius of the planet. the force of gravitational interaction be
    11·1 answer
  • A car with an initial velocity of 16.0 meters per second east slows uniformly to 6.0 meters per second east in 4.0 seconds. What
    8·1 answer
  • Divers found two substances on the bottom of the ocean. At room temperature, both substances are liquid. Scientists then transfe
    9·2 answers
  • A very long wire carries a uniform linear charge density of 5 nC/m. What is the electric field strength 13 m from the center of
    15·1 answer
  • According to Faraday's law, a coil in a strong magnetic field must have a greater induced emf in it than a coil in a weak magnet
    9·1 answer
  • Determine the scalar components Ra and Rb of the force R along the nonrectangular axes a and b. Also determine the orthogonal pr
    10·1 answer
  • Two pickup trucks each have a mass of 2,000 kg. The gravitational force between the trucks is 3.00 × 10-5 N. One pickup truck is
    9·1 answer
  • A projectile was launched horizontally with a velocity of 468 m/s, 1.86 m above the ground. Calculate how long it would take for
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!