The force is gravitational because when something is falling is call gravitational
2NO2 means that there is 2 oxygen atoms and one nitrogen with two sets of that. So its the third one
Let me give you the procedure like this:
Lets say that F is the fraction of the rope hanging over the table
If its like that then we have to take into account that the <span>friction force keeping on table is given by the following formula:</span>
<span>Ff = u*(1-f)*m*g </span>
and we need to know aso that <span>gravity force pulling off the table Fg is given by this other formula:</span>
<span>Fg = f*m*g </span>
What you need to do is <span>Equate the two and solve for f: </span>
<span>f*m*g = u*(1-f)*m*g </span>
<span>=> f = u*(1-f) = u - uf </span>
<span>=> f + uf = u </span>
=> f = u/(1+u) = fraction of rope
With that you can find the answer
Aluminium, or heavier version copper.
Answer:

Explanation:
(a) Free-body diagram attached.
(b) The stone attached with the string experiences both centripetal (towards the center) and centrifugal (away from the center) forces. The tension of the string counters the centrifugal force until it breaks.
We know that,
Centrifugal force = 
where,
= mass of the stone
= velocity of the stone
= length of the string
To find the maximum speed attained by the stone without the string breaking, we must equate:

or, 