Answer:
The number of turns is 
Explanation:
From the question we are told that
The inner radius is 
The outer radius is 
The current it carries is 
The magnetic field is 
The distance from the center is 
Generally the number of turns is mathematically represented as

Generally
is the permeability of free space with value

So


Answer:
kick 1 has travelled 15 + 15 = 30 yards before hitting the ground
so kick 2 travels 25 + 25 = 50 yards before hitting the ground
first kick reached 8 yards and 2nd kick reached 20 yards
Explanation:
1st kick travelled 15 yards to reach maximum height of 8 yards
so, it has travelled 15 + 15 = 30 yards before hitting the ground
2nd kick is given by the equation
y (x) = -0.032x(x - 50)

we know that maximum height occurs is given as


and maximum height is

y = 20
so kick 2 travels 25 + 25 = 50 yards before hitting the ground
first kick reached 8 yards and 2nd kick reached 20 yards
Answer:
E) True. Ball B will go four times as high as ball A because it had four times the initial kinetic energ
Explanation:
To answer the final statements, let's pose the solution of the exercise
Energy is conserved
Initial
Em₀ = K
Em₀ = ½ m v²
Final
Emf = U = mg h
Em₀ = emf
½ m v² = mgh
h = v² / 2g
For ball A
h_A = v² / 2g
For ball B
h_B = (2v)² / 2g
h_B = 4 (v² / 2g) = 4 h_A
Let's review the claims
A) False. The neck acceleration is zero, it has the value of the acceleration of gravity
B) False. Ball B goes higher
C) False has 4 times the gravitational potential energy than ball A
D) False. It goes 4 times higher
E) True.
Answer:
0.69444 m, 0.08152 m, 0.32407 m, 0.03804 m
Explanation:
v = Velocity of sound
f = Frequency
Length of vocal tract is given by

At f = 270 Hz v = 750 m/s

At f = 2300 Hz v = 750 m/s

At f = 270 Hz v = 350 m/s

At f = 2300 Hz v = 350 m/s

Answer:
d = 0.645 m <em>(assuming a radius of the ball bearing of 3 mm)</em>
Explanation:
<u>The given information is:</u>
- <em>The distance from the center of the sun to the center of the earth is 1.496x10¹¹m =
</em> - <em>The radius of the sun is 6.96x10⁸m =
</em>
<u>We need to assume a radius for the ball bearing, so suppose that the radius is 3 mm =
</u>.
First, we need to find how many times the radius of the sun is bigger respect to the radius of the ball bearing, which is given by the following equation:

Now, we can calculate the distance from the center of the sun to the center of the sphere representing the earth,
:
[tex] d_{s} = \frac{d_{e}}{r_{s}/r_{b}} = \frac{1.496 \cdot 10^{11} m}{2.32\cdot 10^{11}} = 0.645 m
I hope it helps you!