The velocity of Ned as measured by Pam is the interpretation of v.
Answer: Option D
<u>Explanation:</u>
According to question, we know that this is an issue depending on the logical and translation of the factors. From the measured information taken what is gathered by the two people is communicated and we have given as:
The Ned reference framework : (x, t)
The Pam reference framework : 
From the reference framework, we realize that ν is the speed of Pam (the other reference framework) as estimation by Ned.
At that point,
is the speed of Ned (from the other arrangement of the reference) as estimation by Pam.
Answer:
a. N = 2.49W b. 0.40
Explanation:
a. What is the magnitude of the normal force FNFN between a rider and the wall, expressed in terms of the rider's weight W?
Since the normal force equals the centripetal force on the rider, N = mrω² where r = radius of cylinder = 3.05 m and ω = angular speed of cylinder = 0.450 rotations/s = 0.450 × 2π rad/s = 2.83 rad/s
Now N = mrω² = m(3.05 m) × (2.83 rad/s)² = 24.43m
The rider's weight W = mg = 9.8m
The ratio of the normal force to the rider's weight is
N/W = 24.43m/9.8m = 2.49
So the normal force expressed in term's of the rider's weight is
N = 2.49W
b. What is the minimum coefficient of static friction µsμs required between the rider and the wall in order for the rider to be held in place without sliding down?
The frictional force, F on the rider by the wall of the cylinder equals the weight, W of the rider. F = W.
Since the frictional force F = μN, where μ = coefficient of static friction between rider and wall of cylinder and N = normal force between rider and wall of cylinder.
So, the normal force equals
N = F/μ = W/μ = mg/μ = mrω²
μ = mg/mrω²
= W/N
= 9.8m/24.43m
= 0.40
<h3><u>Answer;</u></h3>
= 1.256 m
<h3><u>Explanation;</u></h3>
We can start by finding the spring constant
F = k*y
Therefore; k = F/y = m*g/y
= 0.40kg*9.8m/s^2/(0.76 - 0.41)
= 11.2 N/m
Energy is conserved
Let A be the maximum displacement
Therefore; 1/2*k*A^2 = 1/2*k*(1.20 - 0.41)^2 + 1/2*m*v^2
Thus; A = sqrt((1.20 - 0.55)^2 + m/k*v^2)
= sqrt((1.20 -0.55)^2 + 0.40/9.8*1.6^2)
= 0.846 m
Thus; the length will be 0.41 + 0.846 = 1.256 m
Answer:
The heat transferred from water to skin is 6913.5 J.
Explanation:
Given that,
Weight of water = 25.0 g
Suppose that water and steam, initially at 100°C, are cooled down to skin temperature, 34°C, when they come in contact with your skin. Assume that the steam condenses extremely fast. We will further assume a constant specific heat capacity c=4190 J/(kg°K) for both liquid water and steam.
We need to calculate the heat transferred from water to skin
Using formula for stream

Put the value into the formula


Hence, The heat transferred from water to skin is 6913.5 J.