Answer:
Hz
Explanation:
We know that
1 cm = 0.01 m
= Length of the human ear canal = 2.5 cm = 0.025 m
= Speed of sound = 340 ms⁻¹
= First resonant frequency
The human ear canal behaves as a closed pipe and for a closed pipe, nth resonant frequency is given as

for first resonant frequency, we have n = 1
Inserting the values


Hz
Answer:
To calculate the age of a piece of bone
Explanation:
Carbon 14 is an isotope of carbon that is unstable and decays into Nitrogen 14 by emitting an electron. The decay rate of radioactive material is normally expressed in terms of its "half-life" (the time required by half the radioactive nuclei of a sample to undergo radioactive decay). The nice thing about carbon 14 is that its "half-life" is about 5730 years, which gives a nice reference to measure the age of fossils that are some thousand years old.
Carbon 14 dating is used to determine the age of objects that have been living organisms long ago. They measure how much carbon 14 is left in the object after years of decaying without having exchange with the ambient via respiration, ingestion, absorption, etc. and therefore having renewed the normal amount of carbon 14 that is in the ambient.
A rock is not a living organism, so its age cannot be determined by carbon 14 dating.
The mechanical advantage of an inclined plane is
(Length of the incline) / (its height)
= (10m) / (1m)
= 10 .
It's the same for any load, and doesn't depend on the mass that you're trying to move up or down the ramp.
The index of refraction of a material is the ratio between the speed of light in vacuum, c, and the speed of light in that material, v:

where the speed of light in vacuum is

. The speed of light in benzene is

, so we can use the previous relationship to find the refractive index of benzene:
he speed of the student relative to shore is
v_ up = v- vs
v _down = v+ vs
The time required to travel distance d upstream
is
t_up = d/ v_up = d/ v- vs
(2)
The time required to swim the same distance d downstream is
t_down = d/ v_down = d/ v+ vs