answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
musickatia [10]
2 years ago
12

Mr. Smith is designing a race where velocity will be measured. Which course would allow velocity to accurately get a winner?

Physics
2 answers:
liraira [26]2 years ago
6 0
I’m not completely sure but most likely is is the 10 mile bike ride, I hope I can help! (:
Arturiano [62]2 years ago
5 0

Answer:

Option A

Explanation:

(a 5 mile course from the center of town heading north to the outskirts of town)

You might be interested in
Shows an object suspended from two ropes. The weight of the object is 360 N. The magnitude of the tension
konstantin123 [22]

Answer:

Tension T in each rope will be 254.56 N.

Explanation:

From the picture attached,

Weight suspended by the two ropes will be supported by the vertical components of the tension in the ropes.

Vertical components of both the ropes = Tsin(45)° + Tsin(45)°

                                                                 = 2Tsin(45)°

                                                                 = 2T(\frac{1}{\sqrt{2}})

                                                                 = T\sqrt{2}

Since, T\sqrt{2}=360

T = \frac{360}{\sqrt{2} }

T = 254.56 N

Therefore, tension T in each rope will be 254.56 N.

6 0
1 year ago
For the first 10 seconds a squirrel runs 3 m/s to look for an acorn. The next 5 seconds he eats an acorn that he finds. Afterwar
Gala2k [10]

Distance covered by the squirrel to look for an acorn :

d = ( 3 m/s ) × 10 s = 30 m.

Time taken to eat an Acron is 5 seconds.

Time taken to cover distance of 30 m with 2 m/s speed is :

T=\dfrac{30}{2}\ s= 15 \ s

Therefore, total time take to  get back to where he started is ( 10+5+15 ) = 30 s.

Hence, this is the required solution.

7 0
1 year ago
An infinite sheet of charge, oriented perpendicular to the x-axis, passes through x = 0. It has a surface charge density σ1 = -2
docker41 [41]

1) At x = 6.6 cm,  E_x=3.47\cdot 10^6 N/C

2) At x = 6.6 cm, E_y=0

3) At x = 1.45 cm, E_x=-3.76\cdot 10^6N/C

4) At x = 1.45 cm, E_y=0

5) Surface charge density at b = 4 cm: +62.75 \mu C/m^2

6) At x = 3.34 cm, the x-component of the electric field is zero

7) Surface charge density at a = 2.9 cm: +65.25 \mu C/m^2

8) None of these regions

Explanation:

1)

The electric field of an infinite sheet of charge is perpendicular to the sheet:

E=\frac{\sigma}{2\epsilon_0}

where

\sigma is the surface charge density

\epsilon_0=8.85\cdot 10^{-12}F/m is the vacuum permittivity

The field produced by a thick slab, outside the slab itself, is the same as an infinite sheet.

So, the electric field at x = 6.6 cm (which is on the right of both the sheet and the slab) is the superposition of the fields produced by the sheet and by the slab:

E=E_1+E_2=\frac{\sigma_1}{2\epsilon_0}+\frac{\sigma_2}{2\epsilon_0}

where

\sigma_1=-2.5\mu C/m^2 = -2.5\cdot 10^{-6}C/m^2\\\sigma_2=64 \muC/m^2 = 64\cdot 10^{-6}C/m^2

The field of the sheet is to the left (negative charge, inward field), while the field of the slab is the right (positive charge, outward field).

So,

E=\frac{1}{2\epsilon_0}(\sigma_1+\sigma_2)=\frac{1}{2(8.85\cdot 10^{-12})}(-2.5\cdot 10^{-6}+64\cdot 10^{-6})=3.47\cdot 10^6 N/C

And the negative sign indicates that the direction is to the right.

2)

We note that the field produced both by the sheet and by the slab is perpendicular to the sheet and the slab: so it is directed along the x-direction (no component along the y-direction).

So the total field along the y-direction is zero.

This is a consequence of the fact that both the sheet and the slab are infinite along the y-axis. This means that if we take a random point along the x-axis, the y-component of the field generated by an element of surface dS of the sheet (or the slab), dE_y, is equal and opposite to the y-component of the field generated by an element of surface dS of the sheet located at exactly on the opposite side with respect to the x-axis, -dE_y. Therefore, the net field along the y-direction is always zero.

3)

Here it is similar to part 1), but this time the point is located at

x = 1.45 cm

so between the sheet and the slab. This means that both the fields of the sheet and of the slab are to the left, because the slab is negatively charged (so the field is outward). Therefore, the total field is

E=E_1-E_2

Substituting the same expressions of part 1), we find

E=\frac{1}{2\epsilon_0}(\sigma_1-\sigma_2)=\frac{1}{2(8.85\cdot 10^{-12})}(-2.5\cdot 10^{-6}-64\cdot 10^{-6})=-3.76\cdot 10^6N/C

where the negative sign indicates that the direction is to the left.

4)

This part is similar to part 2). Since the field is always perpendicular to the slab and the sheet, it has no component along the y-axis, therefore the y-component of the electric field is zero.

5)

Here we note that the slab is conductive: this means that the charges in the slab are free to move.

We note that the net charge on the slab is positive: this means that there is an excess of positive charge overall. Also, since the sheet (on the left of the slab) is negatively charged, the positive charges migrate to the left end of the slab (at a = 2.9 cm) while the negative charges migrate to the right end (at b = 4 cm).

The net charge per unit area of the slab is

\sigma=+64\mu C/m^2

And this the average of the surface charge density on both sides of the slab, a and b:

\sigma=\frac{\sigma_a+\sigma_b}{2} (1)

Also, the infinite sheet located at x = 0, which has a negative charge \sigma_1=-2.5\mu C/m^2, induces an opposite net charge on the left surface of the slab, so

\sigma_a-\sigma_b = +2.5 \mu C/m^2 (2)

Now we have two equations (1) and (2), so we can solve to find the surface charge densities on a and b, and we find:

\sigma_a = +65.25 \mu C/m^2\\\sigma_b = +62.75 \mu C/m^2

6)

Here we want to calculate the value of the x-component of the electric field at

x = 3.34 cm

We notice that this point is located inside the slab, because its edges are at

a = 2.9 cm

b = 4.0 cm

But slab is conducting , and the electric field inside a conductor is always zero (because the charges are in equilibrium): therefore, this means that the x-component of the electric field inside the slab is zero

7)

We  calculated the value of the charge per unit area on the surface of the slab at x = a = 2.9 cm in part 5), and it is \sigma_a = +65.25 \mu C/m^2

8)

As we said in part 6), the electric field inside a conductor is always zero. Since the slab in this problem is conducting, this means that the electric field inside the slab is zero: therefore, the regions where the field is zero is

2.9 cm < x < 4 cm

So the correct answer is

"none of these region"

Learn more about electric fields:

brainly.com/question/8960054

brainly.com/question/4273177

#LearnwithBrainly

8 0
1 year ago
A car hits another and the two bumpers lock together during the collision. is this an elastic or inelastic collision?
valkas [14]
Inelastic.
If it was elastic, they'd bump right off each other. But since they've been locked, or stuck together, this is inelastic.
8 0
2 years ago
List some reasons why growth characteristics are more useful on agar plates than on agar slants
SpyIntel [72]
Usually, in culturing of the bacteria we have a slant and then portion f it is transferred to the agar plate. The growth characteristics are more useful in the agar plates because it is where we really do the observation because bacteria in slants are still to be transferred in the agar plates. 
5 0
1 year ago
Read 2 more answers
Other questions:
  • If you apply 100.0 N of force to lift an object with a single, fixed pulley, then what is the resistive force?
    8·1 answer
  • Two rockets are flying in the same direction and are side by side at the instant their retrorockets fire. Rocket A has an initia
    8·1 answer
  • A catapult launches a test rocket vertically upward from a well, giving the rocket an initial speed of 79.6 m/s at ground level.
    11·1 answer
  • "You have been asked to design a "ballistic spring system" to measure the speed of bullets. A spring whose spring constant is k
    10·1 answer
  • A nonuniform, horizontal bar of mass m is supported by two massless wires against gravity. The left wire makes an angle ϕ1 with
    13·1 answer
  • The Sun orbits the center of the Milky Way galaxy once each 2.60 × 108 years, with a roughly circular orbit averaging 3.00 × 104
    6·1 answer
  • A rocket exhausts fuel with a velocity of 1500m/s, relative to the rocket. It starts from rest in outer space with fuel comprisi
    15·2 answers
  • In a photoelectric effect experiment, electromagnetic radiation containing a finite distribution of wavelengths shines on a meta
    12·1 answer
  • Una manguera de agua de 1.3 cm de diametro es utilizada para llenar una cubeta de 24 Litros. Si la cubeta se llena en 48 s. A) ¿
    14·1 answer
  • A truck covered 2/7 of a journey at an average speed of 40
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!