To solve this problem we will apply the concepts related to gravity according to the Newtonian definitions. From finding this value we will use the linear motion kinematic equations to find the time. Our values are
Comet mass 
Radius 
Rock was dropped from a height 'h' from surface = 1m
The relation for acceleration due to gravity of a body of mass 'm' with radius 'r' is

Where G means gravitational universal constant and M the mass of the planet


Now calculate the value of the time




The time taken for the rock to reach the surface is t = 87.58s
The position function x(t) of a particle moving along an x axis is 
a) The point at which particle stop, it's velocity = 0 m/s
So dx/dt = 0
0 = 0- 12t = -12t
So when time t= 0, velocity = 0 m/s
So the particle is starting from rest.
At t = 0 the particle is (momentarily) stop
b) When t = 0

SO at x = 4m the particle is (momentarily) stop
c) We have 
At origin x = 0
Substituting

t = 0.816 seconds or t = - 0.816 seconds
So when t = 0.816 seconds and t = - 0.816 seconds, particle pass through the origin.
Nope, I disagree with the former answer. The answer is definitely Z. <u>W area</u> (boxed with red outline) is represented as the hot reservoir while <u>Z area</u> is the cold reservoir (boxed with blue outline). X area is the heat engine itself and Y area is the work produced from thermal energy from hot reservoir. Typically, all heat engines lose some heat to the environment (based from the second law of thermodynamics) that is symbolically illustrated by the lost energy in the cold reservoir. This lost thermal energy is basically the unusable thermal energy. The higher thermal energy lost, the less efficient your heat engine is.
Answer:
Incomplete question
Check attachment for the given diagram
Explanation:
Given that,
Initial Velocity of drum
u=3m/s
Distance travelled before coming to rest is 6m
Since it comes to rest, then, the final velocity is 0m/s
v=3m/s
Using equation of motion to calculate the linear acceleration or tangential acceleration
v²=u²+2as
0²=3²+2×a×6
0=9+12a
12a=-9
Then, a=-9/12
a=-0.75m/s²
The negative sign shows that the cylinder is decelerating.
Then, a=0.75m/s²
So, using the relationship between linear acceleration and angular acceleration.
a=αr
Where
a is linear acceleration
α is angular acceleration
And r is radius
α=a/r
From the diagram r=250mm=0.25m
Then,
α=0.75/0.25
α =3rad/sec²
The angular acceleration is =3rad/s²
b. Time take to come to rest
Using equation of motion
v=u+at
0=3-0.75t
0.75t=3
Then, t=3/0.75
t=4 secs
The time take to come to rest is 4s
Answer:
6.32 m/s 18.43° northeast
Explanation:
We express the velocity of hawk as:

We consider positive x towards east and positive y due north. So the magnitude is simply the square root of the square components:
≈
And the angle with respect to the east should be with:
