answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tia_tia [17]
2 years ago
12

In a photoelectric effect experiment, electromagnetic radiation containing a finite distribution of wavelengths shines on a meta

l plate and photoelectrons are emitted.
a. When the radiation intensity is increased, the number of photoelectrons emitted by the metal ___.
b. When all of the wavelengths in the radiation are increased by the same amount, the number of photoelectrons emitted by the metal ____.
c. When the work function of the metal is increased, the number of photoelectrons emitted by the metal ___.
Physics
1 answer:
Sonja [21]2 years ago
3 0

Answer with Explanation:

a.Intensity of radiation is directly proportional to the frequency of radiation

When the intensity of radiation  increases then the frequency of radiation increases and therefore, the number of photo-electrons emitted by the metal increases.

b.When all  of the wavelength in the radiation are increased by the same amount

We know that  

f=\frac{v}{\lambda}

Frequency is inversely proportional to the wavelength.

Therefore, the frequency decrease .

When the frequency decreases then the number of photo-electrons emitted by the metal decrease.

c.When the work function of the metal is increased  then the gain of kinetic energy decreases .

When energy decreases then the number of photo-electrons emitted by the metal decreases.

You might be interested in
A measuring microscope is used to examine the interference pattern. It is found that the average distance between the centers of
diamong [38]

Answer:

 2n t = m λ₀ ,    R = 0.240 mm

Explanation:

The interference by regency in thin films uses two rays mainly the one reflected on the surface and the one reflected on the inside of the film.

The ray that is reflected in the upper part of the film has a phase change of 180º since the ray stops from a medium with a low refractive index to one with a higher regrading index,

-This phase change is the introduction of a λ/2 change

-The ray passing through the film has a change in wavelength due to the refractive index of the medium

          λ₀ = λ / n

Therefore Taking into account this fact the destructive interference expression introduces an integer phase change, then the extra distance 2t is

        2 t = (m’+ ½ + ½) λ₀ / n

        2t = (m’+1) λ₀ / n

         m = m’+ 1

        2n t = m λ₀

        With   m = 0, 1, 2, ...

Where t is the thickness of the film, n the refractive index of the medium, λ the wavelength

The thickness of a hair is the thickness of the film t

           2R = t

             R = t / 2

             R = 0480/2

              R = 0.240 mm

3 0
1 year ago
A baseball of mass m = 0.49 kg is dropped from a height h1 = 2.25 m. It bounces from the concrete below and returns to a final h
Brilliant_brown [7]

Answer:

Explanation:

Impulse = change in momentum

mv - mu , v and u are final and initial velocity during impact at surface

For downward motion of baseball

v² = u² + 2gh₁

= 2 x 9.8 x 2.25

v = 6.64 m / s

It becomes initial velocity during impact .

For body going upwards

v² = u² - 2gh₂

u² = 2 x 9.8 x 1.38

u = 5.2 m / s

This becomes final velocity after impact

change in momentum

m ( final velocity - initial velocity )

.49 ( 5.2 - 6.64 )

= .7056 N.s.

Impulse by floor in upward direction

= .7056 N.s

6 0
2 years ago
Jack tries to place magnets on his refrigerator at home, but they won’t stick. What could be the reason?
saul85 [17]
The most probable reason why the magnets won't stick on the refrigerator is that the body of the refrigerator and the magnets have like poles. If both have negative or both have positive poles facing each other, they will repel. In principle, magnets are attracted to opposite poles and like poles repel. 
5 0
2 years ago
When two objects are in contact, moving together, which of the following statements must be true? Choose all that apply. When tw
Setler [38]

Answer:

The objects must have the same acceleration and the objects must exert the same magnitude force on each other.

Explanation:

The objects must have the same weight: FALSE. This is not needed, any two object can move together in contact no matter their mass.

The objects must have the same acceleration: TRUE. If they have different accelerations, they will separate since the distance each of them travel at a given time will be different.

The objects must have the same net force acting on them: FALSE. This is not needed, since what matters is acceleration, and a=F/m, so if both objects have different net force acting on them, they could have different masses also to compensate and result in the same acceleration.

The objects must exert the same magnitude force on each other: TRUE, this is the 3rd Newton Law, an action must follow the same reaction.

7 0
2 years ago
Astronauts land on another planet and measure the density of the atmosphere on the planet surface. They measure the mass of a 50
Lana71 [14]

1.6 kg/m^3 is the best estimate of the density of the air on the planet.

Given:

The mass of the conical flask with stopper is 457.23 grams and the volume is 500cm^3.

Mass of conical flask and a stopper after removing the air is 456.43 g

To find:

The density of the air on the planet.

Solution;

Mass of the conical flask and stopper with air on the planet= 457.23 g

Mass of conical flask with a stopper and without air on the planet =  456.43 g

Mass of the air in the conical flask on the planet =m

m = 457.23 g-456.43 g=0.8 g\\\\1 g = 0.001 kg\\\\m =0.8 g =0.8\times 0.001 kg=0.0008 kg

The volume of the conical flask = 500 cm^3

The volume of the air in the conical flask = V = 500cm^3

1 cm^3=10^{-6} m^3\\\\V= 500cm^3= 500\times 10^{-6}m^3=0.0005 m^3

The density of the air on the planet = d

d=\frac{m}{V}\\\\d=\frac{0.0008 kg}{0.0005 m^3}\\\\=1.6 kg/m^3

1.6 kg/m^3 is the best estimate of the density of the air on the planet.

Learn more about density here:

brainly.com/question/952755?referrer=searchResults

brainly.com/question/14373997?referrer=searchResults

7 0
1 year ago
Other questions:
  • What is the weight of an object (mass = 60 kilograms) on Mars, where the acceleration due to gravity is 3.75 meters/second2?. Se
    15·1 answer
  • A 7-n vector at an angle of 45° to the horizontal has a vertical component that is about _______.
    6·1 answer
  • Smoking increases ____ levels in the blood, thus increasing the possibility of unwanted clotting.
    14·1 answer
  • A typical human contains 5.00 l of blood, and it takes 1.00 min for all of it to pass through the heart when the person is resti
    14·2 answers
  • A catapult launches a test rocket vertically upward from a well, giving the rocket an initial speed of 79.6 m/s at ground level.
    11·1 answer
  • You’ve been given the challenge of balancing a uniform, rigid meter-stick with mass M = 95 g on a pivot. Stacked on the 0-cm end
    11·1 answer
  • (1 point) Which of the following statements are true?A.The equation Ax=b is referred to as a vector equation.B.If the augmented
    10·1 answer
  • A basketball player grabbing a rebound jumps 76.0 cm vertically. How much total time (ascent and descent) does the player spend.
    7·1 answer
  • Two circular loops are side by side and lie in the xy-plane. A switch is closed, starting a counterclockwise current in the left
    12·1 answer
  • In this problem, you will calculate the location of the center of mass for the Earth-Moon system, and then you will calculate th
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!