Answer:
Explanation:
From the data it appears that A is the middle point between two charges.
First of all we shall calculate the field at point A .
Field due to charge -Q ( 6e⁻ ) at A
= 9 x 10⁹ x 6 x 1.6 x 10⁻¹⁹ / (2.5)² x 10⁻⁴
= 13.82 x 10⁻⁶ N/C
Its direction will be towards Q⁻
Same field will be produced by Q⁺ charge . The direction will be away
from Q⁺ towards Q⁻ .
We shall add the field to get the resultant field .
= 2 x 13.82 x 10⁻⁶
= 27.64 x 10⁻⁶ N/C
Force on electron put at A
= charge x field
= 1.6 x 10⁻¹⁹ x 27.64 x 10⁻⁶
= 44.22 x 10⁻²⁵ N
Answer:
I believe the answer for this question is D
Explanation:
I hope this helps and is correct
Energy is calculated as power*time, so give the wattage of 1200 W (equivalent to 1200 Joules/second) and time of 30 seconds, multiplying these gives 36000 J or 36 kJ of electrical energy.
If electrical charge or current is needed: Power = voltage * current, so given the power of 1200 watts and voltage of 120 V, current is 1200 W / 120 V = 10 Amperes. Charge is calculated by multiplying 10 A*30 s = 300 C.
As per the question the distance travelled by a car is 28.4 inch.
we are asked to determine the conversion factor in centimeter which when multiplied with 28.4 inch will give a unit.
we know that one inch =2.54 centimeter.
Hence 28.4 inch = 2.54 ×28.4 cm
=72.136 cm.
Now we have to determine the conversion factor .The multiplication factor is calculated as 
[p is the multiplication factor.]
Hence the multiplication factor is 72.137 cm which will give unit conversion when multiplied with 28.4 inch.
kinetic energy is given as
KE = (0.5) m v²
given that : v = speed of the bottle in each case = 4 m/s
when m = 0.125 kg
KE = (0.5) m v² = (0.5) (0.125) (4)² = 1 J
when m = 0.250 kg
KE = (0.5) m v² = (0.5) (0.250) (4)² = 2 J
when m = 0.375 kg
KE = (0.5) m v² = (0.5) (0.375) (4)² = 3 J
when m = 0.0.500 kg
KE = (0.5) m v² = (0.5) (0.500) (4)² = 4 J