answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elden [556K]
2 years ago
11

A 2.5 m -long wire carries a current of 8.0 A and is immersed within a uniform magnetic field B⃗ . When this wire lies along the

+x axis, a magnetic force F⃗ =(−2.3j)N acts on the wire, and when it lies on the +y axis, the force is F⃗ =(2.3i−5.6k)N.
Part A - Find the x-component of B⃗ .

Part B - Find the y-component of B⃗ .

Part C - Find the z-component of B⃗ .
Physics
1 answer:
leva [86]2 years ago
8 0

Answer:

Explanation:

Let the magnetic field be B = B₁i + B₂j + B₃k

Force = I ( L x B )  , I is current , L is length and B is magnetic field .

In the first case

force = - 2.3 j N

L = 2.5 i

puting the values in the equation above

- 2.3 j = 8 [ 2.5 i x ( B₁i + B₂j + B₃k )]

= - 20 B₃ j + 20 B₂ k

comparing LHS and RHS ,

20B₃ = 2.3

B₃ = .115

B₂ = 0

In the second case

L = 2.5 j

Force = I ( L x B )

2.3i−5.6k = 8 ( 2.5 j x (B₁i + B₂j + B₃k )

=  - 20 B₁ k + 20B₃ i

2.3i−5.6k = - 20 B₁ k + 20B₃ i

B₃ = .115

B₁ = .28

So magnetic field B = .28 i + .115 B₃

Part A

x component of B = .28 T

Part B

y component of B = 0

Part C

z component of B = .115 T .

You might be interested in
Two wires are stretched between two fixed supports and have the same length. One wire A there is a second-harmonic standing wave
lina2011 [118]

(a) Greater

The frequency of the nth-harmonic on a string is an integer multiple of the fundamental frequency, f_1:

f_n = n f_1

So we have:

- On wire A, the second-harmonic has frequency of f_2 = 660 Hz, so the fundamental frequency is:

f_1 = \frac{f_2}{2}=\frac{660 Hz}{2}=330 Hz

- On wire B, the third-harmonic has frequency of f_3 = 660 Hz, so the fundamental frequency is

f_1 = \frac{f_3}{3}=\frac{660 Hz}{3}=220 Hz

So, the fundamental frequency of wire A is greater than the fundamental frequency of wire B.

(b) f_1 = \frac{v}{2L}

For standing waves on a string, the fundamental frequency is given by the formula:

f_1 = \frac{v}{2L}

where

v is the speed at which the waves travel back and forth on the wire

L is the length of the string

(c) Greater speed on wire A

We can solve the formula of the fundamental frequency for v, the speed of the wave:

v=2Lf_1

We know that the two wires have same length L. For wire A, f_1 = 330 Hz, while for wave B, f_B = 220 Hz, so we can write the ratio between the speeds of the waves in the two wires:

\frac{v_A}{v_B}=\frac{2L(330 Hz)}{2L(220 Hz)}=\frac{3}{2}

So, the waves travel faster on wire A.

7 0
2 years ago
Which statements identify what astronomers currently know and think will happen with our universe? Check all that apply. The big
Olegator [25]

The big bang produced dark energy, which accounts for some of the energy needed to expand the universe.

The vastness of space may contain a type of matter known as “dark matter.”

The universe is currently expanding at an accelerating rate.

Hope this helps !

7 0
2 years ago
Read 2 more answers
The planet Neptune orbits the Sun. Its orbital radius is 30.130.130, point, 1 astronomical units (\text{AU})(AU)left parenthesis
lord [1]

Answer:

The distance the planet Neptune travels in a single orbit around the Sun is <em>60.2π </em><em>AU.</em>

Explanation:

As it is given that the Neptune's orbit is circular, the formula that we have to use is the circumference of a circle in order to find the distance it travels in a single orbit around the Sun. In other words, you can say that the circumference of the circle is <em>equivalent</em> to the distance it travels around the Sun in a single orbit.

<em>The circumference of the circle = Distance Travelled (in a single orbit) = 2*π*R ---- (A)</em>

Where,

<em>R = Orbital radius (in this case) = 30.1 AU</em>

<em />

Plug the value of R in the equation (A):

<em>(A) => The circumference of the circle = 2*π*(30.1)</em>

<em> The circumference of the circle = </em><em>60.2π</em>

Therefore, the distance the planet Neptune travels in a single orbit around the Sun is <em>60.2π </em><em>AU.</em>

5 0
2 years ago
A shift in one fringe in the Michelson-Morley experiment corresponds to a change in the round-trip travel time along one arm of
olya-2409 [2.1K]

Explanation:

When Michelson-Morley apparatus is turned through 90^{o} then position of two mirrors will be changed. The resultant path difference will be as follows.

      \frac{lv^{2}}{\lambda c^{2}} - (-\frac{lv^{2}}{\lambda c^{2}}) = \frac{2lv^{2}}{\lambda c^{2}}

Formula for change in fringe shift is as follows.

          n = \frac{2lv^{2}}{\lambda c^{2}}

       v^{2} = \frac{n \lambda c^{2}}{2l}

             v = \sqrt{\frac{n \lambda c^{2}}{2l}}

According to the given data change in fringe is n = 1. The data is Michelson and Morley experiment is as follows.

             l = 11 m

    \lambda = 5.9 \times 10^{-7} m

           c = 3.0 \times 10^{8} m/s

Hence, putting the given values into the above formula as follows.

            v = \sqrt{\frac{n \lambda c^{2}}{2l}}

               = \sqrt{\frac{1 \times (5.9 \times 10^{-7} m) \times (3.0 \times 10^{8})^{2}}{2 \times 11 m}}

               = 2.41363 \times 10^{9} m/s

Thus, we can conclude that velocity deduced is 2.41363 \times 10^{9} m/s.

3 0
2 years ago
An air-track cart with mass m1=0.28kg and initial speed v0=0.75m/s collides with and sticks to a second cart that is at rest ini
arsen [322]
Kinetic energy is calculated through the equation,

   KE = 0.5mv²

At initial conditions,

  m₁:  KE = 0.5(0.28 kg)(0.75 m/s)² = 0.07875 J

  m₂ : KE = 0.5(0.45 kg)(0 m/s)² = 0 J

Due to the momentum balance,

   m₁v₁ + m₂v₂ = (m₁ + m₂)(V)

Substituting the known values,

   (0.29 kg)(0.75 m/s) + (0.43 kg)(0 m/s) = (0.28 kg + 0.43 kg)(V)

   V = 0.2977 m/s

The kinetic energy is,
   KE = (0.5)(0.28 kg + 0.43 kg)(0.2977 m/s)²
   KE = 0.03146 J

The difference between the kinetic energies is 0.0473 J. 
7 0
2 years ago
Other questions:
  • A glider moving with a speed of 200 kilometers/hour experiences a cross wind of 30 kilometers/hour. What is the resultant speed
    5·1 answer
  • Is a dimond a pure substance? yes or no
    7·2 answers
  • How does energy from the sun affect the motion of molecules in a gas compared to molecules in a liquid?
    11·2 answers
  • A flying mosquito hits the windshield of a moving car and gets smashed, but the car is intact. Which of the following statements
    14·1 answer
  • A physics student shoves a 0.50-kg block from the bottom of a frictionless 30.0° inclined plane. The student performs 4.0 j of w
    8·1 answer
  • A textbook of mass 2.09kg rests on a frictionless, horizontal surface. A cord attached to the book passes over a pulley whose di
    13·1 answer
  • A cylindrical tank of methanol has a mass of 40 kgand a volume of 51 L. Determine the methanol’s weight, density,and specific gr
    10·1 answer
  • The platform is rotating about the vertical axis such that at any instant its angular position is u = (4t3/2) rad, where t is in
    8·1 answer
  • Determine the scalar components Ra and Rb of the force R along the nonrectangular axes a and b. Also determine the orthogonal pr
    10·1 answer
  • A water-skier with weight Fg = mg moves to the right with acceleration a. A horizontal tension force T is exerted on the skier b
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!