answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
serious [3.7K]
1 year ago
5

A long-distance swimmer is able to swim through still water at 4.0 km/h. She wishes to try to swim from Port Angeles, Washington

, directly north to Victoria, British Columbia, a distance of 50 km. An ocean current flows through the Strait of Juan de Fuca from west to east at 3.0 km/h. In what direction (relative to north) should she swim to make the crossing along a straight line between the two cities?
Physics
1 answer:
Roman55 [17]1 year ago
6 0

Let \theta be the direction the swimmer must swim relative to east. Then her velocity relative to the water is

\vec v_{S/W}=\left(4.0\dfrac{\rm km}{\rm h}\right)(\cos\theta\,\vec\imath+\sin\theta\,\vec\jmath)

The current has velocity vector (relative to the Earth)

\vec v_{W/E}=\left(3.0\dfrac{\rm km}{\rm h}\right)\,\vec\imath

The swimmer's resultant velocity (her velocity relative to the Earth) is then

\vec v_{S/E}=\vec v_{S/W}+\vec v_{W/E}

\vec v_{S/E}=\left(\left(4.0\dfrac{\rm km}{\rm h}\right)\cos\theta+3.0\dfrac{\rm km}{\rm h}\right)\,\vec\imath+\left(4.0\dfrac{\rm km}{\rm h}\right)\sin\theta\,\vec\jmath

We want the resultant vector to be pointing straight north, which means its horizontal component must be 0:

\left(4.0\dfrac{\rm km}{\rm h}\right)\cos\theta+3.0\dfrac{\rm km}{\rm h}=0\implies\cos\theta=-\dfrac{3.0}{4.0}\implies\theta\approx138.59^\circ

which is approximately 41º west of north.

You might be interested in
If the volume of an object is reported as 5.0 ft3 what is the volume in cubic meters
12345 [234]
The problem statement is simply asking us to convert units. We convert from units of ft^3 to units of m^3. To do this, we need a conversion factor. For this case, we use 1 m is equal to 3.28084 ft. We do as follows:

5.0 ft^3 ( 1 m / 3.28084 ft )^3 = 0.1416 m^3
3 0
2 years ago
Two basketball teams are resting during halftime. While they are resting, a truck driver asks them for help pushing his broken d
viva [34]

Answer:

It is a superordinate goal because both teams could have helped with the task.

Explanation:

If both teams pushed then they could have made it happened

7 0
2 years ago
A gaseous system undergoes a change in temperature and volume. What is the entropy change for a particle in this system if the f
jonny [76]

Answer:

<em>Entropy Change = 0.559 Times</em>

Explanation:

Entropy change is determined by the change in the micro-states of a system. As we know that the micro-states are the same as measure of disorderness between initial and final states, that's the the amount of change in micro-states determine how much of entropy has changed in the system.

5 0
2 years ago
A vehicle has an initial velocity of v0 when a tree falls on the roadway a distance xf in front of the vehicle. The driver has a
Korvikt [17]

Answer:

v^2=v_o^2-2\times a\times (v_o.t)

Explanation:

Given:

Initial velocity of the vehicle, v_o

distance between the car and the tree, x_f

time taken to respond to the situation, t

acceleration of the car after braking, a

Using equation of motion:

v^2=u^2+2a.s ..............(1)

where:

v= final velocity of the car when it hits the tree

u= initial velocity of the  car when the tree falls

a= acceleration after the brakes are applied

s= distance between the tree and the car after the brakes are applied.

s=v_o\times t

Now for this situation the eq. (1) becomes:

v^2=v_o^2-2\times a\times (v_o.t) (negative sign is for the deceleration after the brake is applied to the car.)

5 0
1 year ago
An air-track cart with mass m1=0.28kg and initial speed v0=0.75m/s collides with and sticks to a second cart that is at rest ini
arsen [322]
Kinetic energy is calculated through the equation,

   KE = 0.5mv²

At initial conditions,

  m₁:  KE = 0.5(0.28 kg)(0.75 m/s)² = 0.07875 J

  m₂ : KE = 0.5(0.45 kg)(0 m/s)² = 0 J

Due to the momentum balance,

   m₁v₁ + m₂v₂ = (m₁ + m₂)(V)

Substituting the known values,

   (0.29 kg)(0.75 m/s) + (0.43 kg)(0 m/s) = (0.28 kg + 0.43 kg)(V)

   V = 0.2977 m/s

The kinetic energy is,
   KE = (0.5)(0.28 kg + 0.43 kg)(0.2977 m/s)²
   KE = 0.03146 J

The difference between the kinetic energies is 0.0473 J. 
7 0
1 year ago
Other questions:
  • Consider a steel guitar string of initial length l=1.00m and cross-sectional area a=0.500mm2. the young's modulus of the steel i
    7·1 answer
  • When a driver presses the brake pedal, his car stops with an acceleration of -2.1 m/s2. How far will the car travel while coming
    8·1 answer
  • Suppose you have a container filled with iron and sand. You can separate the iron from the sand if you ____________ so this is a
    13·2 answers
  • In the absence of air resistance, at what other angle will a thrown ball go the same distance as one thrown at an angle of 75 de
    13·1 answer
  • A bowling ball has a mass of 5.5 kg and a radius of 12.0 cm. It is released so that
    7·1 answer
  • You are designing a generator with a maximum emf 8.0 V. If the generator coil has 200 turns and a cross-sectional area of 0.030
    11·2 answers
  • The bird is held in level flight due to the force exerted on it by the air as the bird beats its wings. What is the maximum valu
    5·1 answer
  • Workers do 8000 J of work on a 2000-N crate to push it up a ramp. If the ramp is 2 m high, what is the efficiency of the ramp?
    9·2 answers
  • Wile E. Coyote wants to launch Roadrunner into the air using a long lever asshown below. The lever starts at rest before the Coy
    5·1 answer
  • Calculate the kinetic energy of a motorcycle of mass 60kg travelling at a velocity of 40km/h​
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!