Answer:
Robert Hooke
Was the first to use the word "cell"
Observed cork cells
Anton van Leeuwenhoek
Observed "animalcules"
Used polished lens
.
Explanation:
Anton van Leeuwenhoek is known as father of microbiology. He is credited to improve the quality of lens in microscope. His first observation of organisms called animalcules.
He is credited to have build microscope that could get magnified by 200 times. He used word animalcules for small organisms from pond water when first observed in microscope. He discovered protozoa and named it animalcules".
Robert Hooke is famed for discovering cell from a cork of plant. He observed a compartment or honey comb like divisions when observed these cork cells under the microscope and named it cell. He was only able to see the cell wall as the cork cells are dead cells.
Answer: a)
Explanation:
The buoyant force, as stated by Archimedes’ principle, is equal to the weight of the liquid that occupies the same volumen as the submerged object, as follows:
Fb = δ.V.g
If this force is larger than the weight of the object (that means that the fluid is denser than the solid), the object floats, which is the case for silver and mercury.
Instead, silver density is larger than water density, which explains why the pure silver ingot sinks.
Finally, as mercury is denser than water, we conclude that for a same object, the buoyant force in mercury is larger than in water (exactly 13.6 times greater).
B. A 50g fish swimming in a fish tank.
Answer:
F= σ² L² /2ε₀
F = (L² ε₀/4π) ΔV² / r⁴
Explanation:
a) For this exercise we can use Coulomb's law
F = - k Q² / r²
where the negative sign indicates that the force is attractive and the value of the charge is equal to the two plates
Capacitance is defined by
C = Q / ΔV
Q = C ΔV
also the capacitance for a parallel plate capacitor is related to its shape
C = ε₀ A / r
we substitute
Q = ε₀ A ΔV / r
we substitute in the force equation
F = k (ε₀ A ΔV / r)² / r²
k = 1 / 4πε₀
F = ε₀ /4π L² ΔV² / r⁴4
F = L² ΔV² ε₀/ (4π r⁴)
F = (L² ε₀/4π) ΔV² / r⁴
b) Another way to solve the exercise is to use the relationship between the force and the electric field
F = q E
where we can calculate the field created by a plane using Gaussian law, where we use a cylinder with a base parallel to the plate as the Gaussian surface
Ф = ∫E .dA =
/ ε₀
the plate have two side
2E A = q_{int} / ε₀
E = σ / 2ε₀
σ = q_{int} / A
substituting in force
F = q σ / 2ε₀
the charge total on the other plate is
q = σ A
q = σ L²
F= σ² L² /2ε₀
First off, you can cross out alternating current because a 9V battery doesn't give out AC, it gives out solely DC. If the battery is connected to each battery individually, then they are in parallel. So, according to Kirchhoff's Voltage Law, in parallel, V total = V1 = V2= V3..
So I'd say B) !