answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
NARA [144]
2 years ago
8

When a driver presses the brake pedal, his car stops with an acceleration of -2.1 m/s2. How far will the car travel while coming

to a complete stop if its initial speed was 13 m/s?
Physics
1 answer:
Burka [1]2 years ago
8 0
The kinematic equation that will be used for this problem is:
Vf^2 = V1^2 + 2 * a * d, where, 
Vf = final velocity = 0 m/s
V1 = initial velocity = 13 m/s
a = acceleration = -2.1m/s^2
d = distance traveled = ?
Inserting the given values, the equation becomes
0^2 = 13^2 + 2 * -2.1 * d
0 = 169 + - 4.2*d
169 = 4.2 * d
169/4.2 = d = 40.24
Therefore, d = 40.24 M.
You might be interested in
Come si compongono due forze che agiscono in diversi punti di un corpo rigido? Oof
bagirrra123 [75]

Answer:

Explanation:

I dont know if this will help but A two force member is a body that has forces (and only forces, no moments) acting on it in only two locations. In order to have a two force member in static equilibrium, the net force at each location must be equal, opposite, and collinear.

7 0
1 year ago
What are the magnitude and direction of the force the pitcher exerts on the ball? (enter your magnitude to at least one decimal
murzikaleks [220]
Details are missing in the question. Complete text of the problem:

"The gravitational force exerted on a baseball is 2.28 N down. A pitcher throws the ball horizontally with velocity 16.5 m/s by uniformly accelerating it along a straight horizontal line for a time interval of 181 ms. The ball starts from rest.

(a) Through what distance does it move before its release? (m)
(b) What are the magnitude and direction of the force the pitcher exerts on the ball? (Enter your magnitude to at least one decimal place.)"


Solution

(a) The pitcher accelerates the baseball from rest to a final velocity of v_f = 16.5 m/s, so \Delta v=16.5 m/s, in a time interval of \Delta t = 181 ms=0.181 s. The acceleration of the ball in the horizontal direction (x-axis) is therefore

a_x =  \frac{\Delta v}{\Delta t}= \frac{16.5 m/s}{0.181 s}=91.2 m/s^2

And the distance covered by the ball during this time interval, before it is released, is:

S= \frac{1}{2} a_x (\Delta t)^2 = \frac{1}{2} (91.2 m/s^2)(0.181 s)^2=1.49 m

(b) For this part we need to consider also the weight of the ball, which is W=mg=2.28 N

From this, we find its mass: m= \frac{W}{g}= \frac{2.28 N}{9.81 m/s^2}=0.23 Kg

Now we can calculate the magnitude of the force the pitcher exerts on the ball. On the x-axis, we have

F_x = m a_x = (0.23 kg)(91.2 m/s^2)=20.98 N

We also know that the ball is moving straight horizontally. This means that the vertical component of the force exerted by the pitcher must counterbalance the weight of the ball (acting downward), in order to have a net force of zero along the y-axis, and so:

F_y=W=mg=2.28 N (upward)

So, the magnitude of the force is

F= \sqrt{F_x^2+F_y^2}=  \sqrt{(20.98N)^2+(2.28N)^2}=21.2 N

To find the direction, we should find the angle of F with respect to the horizontal. This is given by

\tan \alpha =  \frac{F_y}{F_x}= \frac{2.28 N}{20.98 N}=0.11

From which we find \alpha=6.2^{\circ}

7 0
2 years ago
Read 2 more answers
Un tren emplea cierto tiempo en recorrer 240 km. Si la velocidad hubiera sido 20 km por hora mas que la que llevaba hubiera tard
podryga [215]

Answer:

A train takes some time to travel 240 km. If the speed had been 20 km per hour more than the one it was carrying, it would have taken 2 hours less to travel this distance. In what time did he cover the 240 km

Explanation:

Given that,

A train travelled a distance of 240km

Let the initial speed be

S_1 = x km/hr

Let assume the time spent on the first journey is

t_1 = a

Now if he increase the speed to

S_2 = (x + 20) km/hr

Then, he would have take 2hrs less time

Then, time t_2 = a - 2

The common data fore the two journey is the distance

Speed = distance / time

For the first stage

S_1 = d / t_1

d = S_1 × a

d = x × a

240 = x•a

x = 240 / a Equation 1

For stage two

d = S_2 × t_2

d = (x+20) × (a - 2)

240 = (x+20) × (a - 2). Equation 2

Substitute equation 1 into 2

240 = (240/a + 20) × (a -2)

240 = 240 - 480/a + 20a - 40

240 - 240 + 40 = - 480/a + 20a

240 - 240 + 40 = (-480 + 20a²) / a

40 = (-480 + 20a²) / a

40a = -480 + 20a²

20a² - 40a -480 = 0

Divided through by 20

a² - 2a - 24 = 0

a² + 4a - 6a - 24 = 0

a(a+4) -6(a+4) = 0

(a-6)(a+4) = 0

(a-6) = 0 or (a+4) = 0

So, a = 6 or a = -4

The time cannot be negative, then, the time is a = 6hours

So, t_1 = a = 6hours,

So, the time used in the first journey is 6hours

So, in the second journey the time use is 2hours less than the first journey

Then, t_2 = 6 - 2 = 4 hours

t_1 = 6 hours

t_2 = 4 hours

Spanish

Un tren recorrió una distancia de 240 km.

Deje que la velocidad inicial sea

S_1 = x km / h

Supongamos que el tiempo dedicado al primer viaje es

t_1 = a

Ahora si aumenta la velocidad a

S_2 = (x + 20) km / h

Entonces, habría tomado 2 horas menos de tiempo

Entonces, el tiempo t_2 = a - 2

Los datos comunes para los dos viajes son la distancia.

Velocidad = distancia / tiempo

Para la primera etapa

S_1 = d / t_1

d = S_1 × a

d = x × a

240 = x • a

x = 240 / a Ecuación 1

Para la etapa dos

d = S_2 × t_2

d = (x + 20) × (a - 2)

240 = (x + 20) × (a - 2). Ecuación 2

Sustituye la ecuación 1 en 2

240 = (240 / a + 20) × (a -2)

240 = 240 - 480 / a + 20a - 40

240 - 240 + 40 = - 480 / a + 20a

240 - 240 + 40 = (-480 + 20a²) / a

40 = (-480 + 20a²) / a

40a = -480 + 20a²

20a² - 40a -480 = 0

Dividido entre 20

a² - 2a - 24 = 0

a² + 4a - 6a - 24 = 0

a (a + 4) -6 (a + 4) = 0

(a-6) (a + 4) = 0

(a-6) = 0 o (a + 4) = 0

Entonces, a = 6 o a = -4

El tiempo no puede ser negativo, entonces, el tiempo es a = 6 horas

Entonces, t_1 = a = 6 horas,

Entonces, el tiempo utilizado en el primer viaje es de 6 horas

Entonces, en el segundo viaje, el uso del tiempo es 2 horas menos que el primer viaje

Entonces, t_2 = 6 - 2 = 4 horas

t_1 = 6 horas

t_2 = 4 horas

5 0
2 years ago
Current X is 2.5 A and runs for 39 seconds. Current Y is 3.8 A and runs for 24 seconds. Which current delivered more charge, and
Aleonysh [2.5K]

Answer: B. Current x delivered 6.3 C more then Y

Explanation:

7 0
2 years ago
WallyGPX accelerates from 0 m/s to 8 m/s in 3 seconds. What is his acceleration? Is this acceleration higher than that of a car
olga nikolaevna [1]

My Phone is +2348181686682

4 0
2 years ago
Other questions:
  • A raft is made of a plastic block with a density of 650 kg/m 3 , and its dimensions are 2.00 m à 3.00 m à 5.00 m. 1. what is the
    5·1 answer
  • You are moving at a speed 2/3 c toward randy when randy shines a light toward you. at what speed do you see the light approachin
    12·1 answer
  • Your friend states in a report that the average time required to circle a 1.5-mi track was 65.414 s. This was measured by timing
    15·1 answer
  • A thermally isolated system is made up of a hot piece of aluminum and a cold piece of copper; the aluminum and the copper are in
    5·1 answer
  • A balloon was filled to a volume of 2.50 l when the temperature was 30.0∘c. What would the volume become if the temperature drop
    14·1 answer
  • A sample of gold has a volume of 2 cm3 and a mass of 38.6 grams. What would be the density, and three other properties of the sa
    12·1 answer
  • Which one of the following represents an acceptable set of quantum numbers for an electron in an atom? (arranged as n, l, m l ,
    12·1 answer
  • ) A physics student wants to measure the stiffness of a spring (force required per cm stretched). He knows that according to Hoo
    8·1 answer
  • A pendulum makes 50 complete swings in 2 min 40 s.<br> What is the time period for 1 complete swing?
    12·2 answers
  • Students use a stretched elastic band to launch carts of known mass horizontally on a track. The elastic bands exert a force F,
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!