The formula for kinetic energy is

. Thus, the equation for velocity is

.
Answer:
a) When its length is 23 cm, the elastic potential energy of the spring is
0.18 J
b) When the stretched length doubles, the potential energy increases by a factor of four to 0.72 J
Explanation:
Hi there!
a) The elastic potential energy (EPE) is calculated using the following equation:
EPE = 1/2 · k · x²
Where:
k = spring constant.
x = stretched lenght.
Let´s calculate the elastic potential energy of the spring when it is stretched 3 cm (0.03 m).
First, let´s convert the spring constant units into N/m:
4 N/cm · 100 cm/m = 400 N/m
EPE = 1/2 · 400 N/m · (0.03 m)²
EPE = 0.18 J
When its length is 23 cm, the elastic potential energy of the spring is 0.18 J
b) Now let´s calculate the elastic potential energy when the spring is stretched 0.06 m:
EPE = 1/2 · 400 N/m · (0.06 m)²
EPE = 0.72 J
When the stretched length doubles, the potential energy increases by a factor of four to 0.72 J
Answer: Option (A) is the correct answer.
Explanation:
Convection is a process in which heat transfers from a hotter substance to a colder substance.
As a result, the substance which is less dense will rise and the more denser substance will sink due to the influence of gravity.
Thus, we can conclude that in the given situation substance X will rise due to convection.
Answer:
(a) F= 6.68*10¹¹⁴ N (-k)
(b) F =( 6.68*10¹¹⁴ i + 7.27*10¹¹⁴ j ) N
Explanation
To find the magnetic force in terms of a fixed amount of charge q that moves at a constant speed v in a uniform magnetic field B we apply the following formula:
F=q* v X B Formula (1 )
q: charge (C)
v: velocity (m/s)
B: magnetic field (T)
vXB : cross product between the velocity vector and the magnetic field vector
Data
q= -1.24 * 10¹¹⁰ C
v= (4.19 * 10⁴ m/s)î + (-3.85 * 10⁴m/s)j
B =(1.40 T)i
B =(1.40 T)k
Problem development
a) vXB = (4.19 * 10⁴ m/s)î + (-3.85* 10⁴m/s)j X (1.40 T)i =
= - (-3.85*1.4) k = 5.39* 10⁴ m/s*T (k)
1T= 1 N/ C*m/s
We apply the formula (1)
F= 1.24 * 10¹¹⁰ C* 5.39* 10⁴ m/s* N/ C*m/s (-k)
F= 6.68*10¹¹⁴ N (-k)
a) vXB = (4.19 * 10⁴ m/s)î + (-3.85* 10⁴m/s)j X (1.40 T)k =
=( - 5.39* 10⁴i - 5.87* 10⁴j)m/s*T
1T= 1 N/ C*m/s
We apply the formula (1)
F= 1.24 * 10¹¹⁰ C* ( 5.39* 10⁴i + 5.87* 10⁴j) m/s* N/ C*m/s
F =( 6.68*10¹¹⁴ i + 7.27*10¹¹⁴ j ) N
I believe it would be 1.6 East