•wind
•snow
•high tide/low tide
•thunder/lightning storms
Answer:
A. 39.2 m/s
B. 78.4 m
Explanation:
Data obtained from the question include:
Time (t) = 4 s
Acceleration due to gravity (g) = 9.8 m/s²
A. Determination of the brick's velocity.
Time (t) = 4 s
Acceleration due to gravity (g) = 9.8 m/s²
Velocity (v) =?
v = gt
v = 4 × 9.8
v = 39.2 m/s
Thus, the brick's velocity after 4 s is 39.2 m/s
B. Determination of how far the brick fall in 4 s.
Time (t) = 4 s
Acceleration due to gravity (g) = 9.8 m/s²
Height (h) =?
h = ½gt²
h = ½ × 9.8 × 4²
h = 4.9 × 16
h = 78.4 m
Thus, the brick fall 78.4 m during the time.
Answer:
Magnetic field, B = 0.004 mT
Explanation:
It is given that,
Charge, 
Mass of charge particle, 
Speed, 
Acceleration, 
We need to find the minimum magnetic field that would produce such an acceleration. So,

For minimum magnetic field,



B = 0.004 T
or
B = 4 mT
So, the magnetic field produce such an acceleration at 4 mT. Hence, this is the required solution.
Answer:
0.5 m
Explanation:
Givens:
ym1 = 2.5 mm
ym2 = 4.5 mm
Ф_1=π / 4
Ф_2=π / 2
We have 2 ways to solve this problem. The first one given that the 2 waves have the frequency then we know that the resultant wave amplitude is
Ym = (ym1 + ym2)cos(Ф_2/2)
By substitution we have
Ym= (0.025 + 0.045)cos(π/4) = 0.496 m
The second one is it treat them as Phasors where the phase between them is Ф_2=π / 2 Therefore
Ym^2=(ym1^2+ym2^2)
So we have Ym=√0.025^2+0.045^2
= 0.5 m