answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Harlamova29_29 [7]
2 years ago
9

Shutting the fluid discharge of an air-operated reciprocating pump will cause the pump to ?

Physics
2 answers:
Misha Larkins [42]2 years ago
8 0
Had to look for the options and here is my answer. What happens when the fluid discharge of an air-operated reciprocating pump is shut, this will cause the pump to OVERSTROKE. Overstroke happens when the engine is switching in a normally-closed manner.  
KATRIN_1 [288]2 years ago
4 0

Explanation:

In pneumatic pumps, compressed air is utilized to generate a force that is used to channel fluids through the piping system. If the discharge line of the pneumatic pump is blocked the pump will stop and the fluid won't flow, the pump won't run and airflow will also stop. Pneumatic pumps have weak drivers. The compressed air which runs the pump is also at low pressure.

You might be interested in
The integral with respect to time of a force applied to an object is a measure called impulse, and the impulse applied to an obj
aliina [53]

Answer:

Follows are the solution to this question:

Explanation:

By checking the value in which we have calculated by performing its differentiation of \frac{a}{3}t^3+bt, the correct form of its integer value is calculating  with regard to t, that also provides as expected at^2+b = F(t).

4 0
1 year ago
A small metallic bob is suspended from the ceiling by a thread of negligible mass. The ball is then set in motion in a horizonta
shusha [124]

Answer:

19.99 kg m²/s

Explanation:

Angular Momentum (L) is defined as the product of the moment of Inertia (I) and angular velocity (w)

L = m r × v.

r and  v are perpendicular to each other,

where r = lsinθ.

l = 2.4 m

θ= 34°

g = 9.8 m/s²  and m = 5 kg

resolving using newtons second law in the vertical and horizontal components.

T cos θ − m g = 0

T sin θ − mw² lsin θ = 0

where T is the force with which the wire acts on the bob

w = √g / lcosθ

= √ 9.8 / 2.4 ×cos 34

= 2.2193 rad/s

the angular momentum  L = mr× v

= mw (lsin θ)²

= 5 × 2.2193 (2.4 ×sin 34°)²

=19.99 kg m²/s

8 0
2 years ago
6) A map in a ship’s log gives directions to the location of a buried treasure. The starting location is an old oak tree. Accord
kiruha [24]

Answer:

Sorry cant find the answer but i hope you got it right and if you didn't you'll still do great. :)

Explanation:

4 0
2 years ago
A nonuniform, but spherically symmetric, distribution of charge has a charge density ρ(r) given as follows:
Nikitich [7]

Answer:

r ≥ R, E = Q / (4πR²ε₀)

r ≤ R, E = 12Q (⅓ (r/R)³ − ¼ (r/R)⁴) / (4πr²ε₀)

Maximum at r = ⅔ R

Maximum field of E = Q / (3πε₀R²)

Explanation:

Gauss's law states:

∮E·dA = Q/ε₀

What that means is, if you have electric field vectors E passing through areas dA, the sum of those E vector components perpendicular to the dA areas is equal to the total charge Q divided by the permittivity of space, ε₀.

a) r ≥ R

Here, we're looking at the charge contained by the entire sphere.  The surface area of the sphere is 4πR², and the charge it contains is Q.  Therefore:

E(4πR²) = Q/ε₀

E = Q / (4πR²ε₀)

b) r ≤ R

This time, we're looking at the charge contained by part of the sphere.

Imagine the sphere is actually an infinite number of shells, like Russian nesting dolls.  For any shell of radius r, the charge it contains is:

dq = ρ dV

dq = ρ (4πr²) dr

The total charge contained by the shells from 0 to r is:

q = ∫ dq

q = ∫₀ʳ ρ (4πr²) dr

q = ∫₀ʳ ρ₀ (1 − r/R) (4πr²) dr

q = 4πρ₀ ∫₀ʳ (1 − r/R) (r²) dr

q = 4πρ₀ ∫₀ʳ (r² − r³/R) dr

q = 4πρ₀ (⅓ r³ − ¼ r⁴/R) |₀ʳ

q = 4πρ₀ (⅓ r³ − ¼ r⁴/R)

Since ρ₀ = 3Q/(πR³):

q = 4π (3Q/(πR³)) (⅓ r³ − ¼ r⁴/R)

q = 12Q (⅓ (r/R)³ − ¼ (r/R)⁴)

Therefore:

E(4πr²) = 12Q (⅓ (r/R)³ − ¼ (r/R)⁴) / ε₀

E = 12Q (⅓ (r/R)³ − ¼ (r/R)⁴) / (4πr²ε₀)

When E is a maximum, dE/dr is 0.

First, simplify E:

E = 12Q (⅓ (r/R)³ − ¼ (r/R)⁴) / (4πr²ε₀)

E = Q (4 (r³/R³) − 3 (r⁴/R⁴)) / (4πr²ε₀)

E = Q (4 (r/R³) − 3 (r²/R⁴)) / (4πε₀)

Take derivative and set to 0:

dE/dr = Q (4/R³ − 6r/R⁴) / (4πε₀)

0 = Q (4/R³ − 6r/R⁴) / (4πε₀)

0 = 4/R³ − 6r/R⁴

0 = 4R − 6r

r = ⅔R

Evaluating E at r = ⅔R:

E = Q (4 (⅔R / R³) − 3 (⁴/₉R² / R⁴)) / (4πε₀)

E = Q (8 / (3R²) − 4 / (3R²)) / (4πε₀)

E = Q (4 / (3R²)) / (4πε₀)

E = Q (1 / (3R²)) / (πε₀)

E = Q / (3πε₀R²)

3 0
2 years ago
A person travels distance πR along the circumference
lakkis [162]

Answer: 2R

Explanation:

Here the person travels пR distance. We know that the circumference of a circle is 2πR. So your imaginated person has traveled the distance which​ is half of the circumference of the circle. And this distance is equal to its diameter. We know that diameter of a circle is two times larger than the radius. So the person's displacement is two times of the radius, means 2R. [Here 'R' means the radius of the circle]

8 0
2 years ago
Read 2 more answers
Other questions:
  • You are designing a generator with a maximum emf 8.0 V. If the generator coil has 200 turns and a cross-sectional area of 0.030
    11·2 answers
  • Which of the following statements best represents the impact of evolutionary theory on the field of psychology?
    10·1 answer
  • What is the Physics Primer?
    15·2 answers
  • A toy car has a battery-powered fan attached to it such that the fan creates a constant force that is exerted on the car so that
    11·2 answers
  • While working on her science fair project Venus connected a battery to a circuit that contained a light bulb. Venus decided to c
    8·1 answer
  • An object initially at rest experiences a constant horizontal acceleration due to the action of a resultant force applied for 10
    15·1 answer
  • You are to design a rotating cylindrical axle to lift 800 N buckets of cement from the ground to a rooftop 78.0 m above the grou
    10·1 answer
  • It has been proposed that extending a long conducting wire from a spacecraft (a "tether") could be used for a variety of applica
    9·1 answer
  • PLEASE HELPPP 100 POINTS HURRY !!!!Which diagram best illustrates the magnetic field of a bar magnet? A bar magnet with a north
    13·2 answers
  • 8. An unpowered flywheel is slowed by a constant frictional torque. At time t = 0 it has an angular velocity of 200 rad/s. Ten s
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!