answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
expeople1 [14]
1 year ago
10

A physics department has a Foucault pendulum, a long-period pendulum suspended from the ceiling. The pendulum has an electric ci

rcuit that keeps it oscillating with a constant amplitude. When the circuit is turned off, the oscillation amplitude decreases by 50% in 37 minutes.
a. What is the pendulum's time constant?



b. How much additional time elapses before the amplitude decreases to 25% of its initial value?
Physics
1 answer:
antoniya [11.8K]1 year ago
8 0

Answer:

t=37 mins -> 2220sec

We want "T" which is the pendulum time constant

Using this equation

.5A=Ae^(-t/T)

The .5A is half the amplitude

Take ln of both sides to get ride of Ae

=ln(.5)=-2220/T

Now rearrange to = T

T=-2220/ln(.5) = 3202.78sec / 60 secs = 53.38 mins -> first part of the answer.

The second part is really easy. It took 37 mins to decay half way. meaning to decay another half of 50% which equals 25% it will take an additional 37 mins!

You might be interested in
A circular surface with a radius of 0.057 m is exposed to a uniform external electric field of magnitude 1.44 × 104 N/C. The mag
klio [65]

Answer:

57.94°

Explanation:

we know that the expression of flux

\Phi =E\times S\times COS\Theta

where Ф= flux

           E= electric field

           S= surface area

        θ = angle between the direction of electric field and normal to the surface.

we have Given Ф= 78 \frac{Nm^{2}}{sec}

                          E=1.44\times 10^{4}\frac{Nm}{C}

                          S=\pi \times 0.057^{2}

                         COS\Theta =\frac{\Phi }{S\times E}

 =   \frac{78}{1.44\times 10^{4}\times \pi \times 0.057^{2}}

 =0.5306

 θ=57.94°

4 0
2 years ago
An electron moving at right angles to a 0.1 T magnetic field experiences an acceleration of 6 × 1015 m.s-2. What is the speed of
GaryK [48]

Explanation:

It is given that,

Magnetic field, B = 0.1 T

Acceleration, a=6\times 10^{15}\ m/s^2

Charge on electron, q=1.6\times 10^{-19}\ C    

Mass of electron, m=9.1\times 10^{-31}\ kg    

(a) The force acting on the electron when it is accelerated is, F = ma

The force acting on the electron when it is in magnetic field, F=qvB\ sin\theta

Here, \theta=90

So, ma=qvB

Where

v is the velocity of the electron

B is the magnetic field

v=\dfrac{ma}{qB}

v=\dfrac{9.1\times 10^{-31}\ kg\times 6\times 10^{15}\ m/s^2}{1.6\times 10^{-19}\ C\times 0.1\ T}

v = 341250  m/s

or

v=3.41\times 10^5\ m/s

So, the speed of the electron is 3.41\times 10^5\ m/s

(b) In 1 ns, the speed of the electron remains the same as the force is perpendicular to the cross product of velocity and the magnetic field.

7 0
2 years ago
John runs 1.0 m/s at first, and then accelerates to 1.6 m/s during
erastova [34]

Answer: 0.13m/s^2

Explanation:

Formula: a=\frac{V_2-V_1}{t}

Where;

a = acceleration

V2 = final velocity

V1 = initial velocity

t = time

If John runs 1.0 m/s first, we assume this is V1. He accelerates to 1.6 m/s; this is V2.

a=\frac{1.6m/s-1.0m/s}{4.5s}

a=\frac{0.6m/s}{4.5s}

a=0.13m/s^2

7 0
2 years ago
Read 2 more answers
Arm abcd is pinned at b and undergoes reciprocating motion such that θ=(0.3 sin 4t) rad, where t is measured in seconds and the
storchak [24]
<span>θ=0.3sin(4t)
w=0.3cost(4t)(4)=1.2cost(4t)
a=-4.8sin(4t)

cos4t max will always be 1 (refer to cos graph), for same reason, sin4t will always be 0

therefore, wmax=1.2rad/s
 
vAmax=r*w=250*1.2=300mm/s
(may be different if your picture/radius is from a different picture)

adt=a*r=200*-4.8sin(4t)=0 (sin(4t)=0)

adn=r*w^2=200*1.2^2=288

ad= square root of adt^2+adn^2 = 288mm/s^2</span>
8 0
2 years ago
An 1876 N crate is being pushed across a level force at a constant speed by a force of 747 N. What is the coefficient of kinetic
nekit [7.7K]

The crate only moves horizontally, so its net vertical force is 0. The only forces acting in the vertical direction are the crate's weight (pointing downward) and the normal force of the surface on the crate (pointing upward). By Newton's second law, we have

∑ <em>F</em> (vertical) = <em>n</em> - <em>mg</em> = 0   →   <em>n</em> = <em>mg</em> = 1876 N

where <em>n</em> is the magnitude of the normal force.

In the horizontal direction, the crate is moving at a constant speed and thus with no acceleration, so it's completely in equilibrium and the net horizontal force is also 0. The only forces acting on it in this direction are the 747 N push (pointing in the direction of the crate's motion) and the kinetic friction opposing it (pointing in the opposite direction). By Newton's second law,

∑ <em>F</em> (horizontal) = 747 N - <em>f</em> = 0   →   <em>f</em> = 747 N

The frictional force is proportional to the normal force by a factor of the coefficient of kinetic friction, <em>µ</em>, such that

<em>f</em> = <em>µn</em>   →   <em>µ</em> = <em>f</em> / <em>n</em> = (747 N) / (1876 N) ≈ 0.398188 ≈ 0.40

8 0
2 years ago
Other questions:
  • Roseanne heated a solution in a beaker as part of a laboratory experiment on energy transfer. After a while, she noticed the liq
    5·1 answer
  • A particle moves according to a law of motion s = f(t), t ≥ 0, where t is measured in seconds and s in feet. f(t) = 0.01t4 − 0.0
    8·1 answer
  • In Florida, once you have had your learner's license for _________________ without any traffic convictions, you will receive an
    11·1 answer
  • A weightlifter lifts a 250-kg mass 0.5 meters above his head, how much PEg does the mass have (Note: g=9.8 m/s2)? Round your ans
    14·2 answers
  • A child pulls a wagon at a constant velocity along a level sidewalk. The child does this by applying a 22 newton force to the wa
    8·1 answer
  • Trained dolphins are capable of a vertical leap of 7.0m straight up from the surface of the water-an impressive feat.Suppose you
    15·1 answer
  • In very cold weather, a significant mechanism for heat loss by the human body is energy expended in warming the air taken into t
    11·1 answer
  • A weightlifter lifts a 125-kg barbell straight up 1.15 m in 2.5 s. What was the power expended by the weightlifter?
    14·1 answer
  • In a rocket-propulsion problem the mass is variable. Another such problem is a raindrop falling through a cloud of small water d
    13·1 answer
  • Calculate the mass (in kg) of 54.3 m³ of granite. The density of granite is 2700 kg/m³. Give your answer to 2 decimal places.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!