Answer:
33.68 N
Explanation:
Data
W= 32J
d- 0.95m
F= ?
W=Fd
They are asking for the magnitude which is the force, so you need to solve for force.
F=W/d
= 32J/ 0.95m
= 33.68 N
Correct option: A
An object remains at rest until a force acts on it.
As the water moves faster, it applies greater force on the sediment, which over comes the frictional forces between the bed and the sediment. So, when the river flows faster, more and larger sediment particles are carried away. When the flow slows down, the river couldn't apply enough force on the larger sediments which can overcome the frictional force between the sediment and the river bed. So, the net force on the heavier particles become zero. Hence, the heavier particles of the load will settle out.
Answer:
We can conclude that there is a decrease in kinetic energy of the particles due to their elastic collision, since kinetic energy is directly proportional to squared velocity of the particles.
Explanation:
Given:
initial velocity of particle A, Ua = 5m/s
initial velocity of particle B, Ub = 10 m/s
final velocity of particle A, Va = 4m/s
final velocity of particle B, Vb = 7m/s
For particle A:
The final velocity is 1 less than the initial velocity.
For particle B:
The final velocity is 3 less than the initial velocity.
We can conclude that there is a loss in kinetic energy due to elastic collision of the two particles, since kinetic energy is directly proportional to squared velocity of the particles. A decrease in velocity means decrease in kinetic energy.
Answer:
Explanation:
The temperature is at its Melting Point - <em>t</em><u><em>emperature at which a solid begins to liquefy. </em></u>
<u><em /></u>
<u><em>Got The Answer From Google</em></u>