Answer:
The torque on the wrench is 4.188 Nm
Explanation:
Let r = xi + yj where is the distance of the applied force to the origin.
Since x = 18 cm = 0.18 cm and y = 5.5 cm = 0.055 cm,
r = 0.18i + 0.055j
The applied force f = 88i - 23j
The torque τ = r × F
So, τ = r × F = (0.18i + 0.055j) × (88i - 23j) = 0.18i × 88i + 0.18i × -23j + 0.055j × 88i + 0.055j × -23j
= (0.18 × 88)i × i + (0.18 × -23)i × j + (0.055 × 88)j × i + (0.055 × -22)j × j
= (0.18 × 88) × 0 + (0.18 × -23) × k + (0.055 × 88) × (-k) + (0.055 × -22) × 0 since i × i = 0, j × j = 0, i × j = k and j × i = -k
= 0 - 4.14k + 0.0484(-k) + 0
= -4.14k - 0.0484k
= -4.1884k Nm
≅ -4.188k Nm
So, the torque on the wrench is 4.188 Nm
The displacement is the shortest distance between two points, which is 546.41. The displacement for both is 546.41 meters
Average velocity of X = (200 + 200 + 200) / 30
Average velocity of X = 20 m/s
Average velocity of Y = 546.41 / 30 = 18.2 m/s
Answer:
The value of total energy needed per minute for the humidifier = 77.78 KJ
Explanation:
Total energy per minute the humidifier required = Energy required to heat water to boiling point) + Energy required to convert liquid water into vapor at the boiling point) ----- (1)
Specific heat of water = 4190 
The heat of vaporization is = 2256 
Mass = 0.030 kg
Energy needed to heat water to boiling point = 
Energy needed to heat water to boiling point = 0.030 × 4.19 × (100 - 20)
Energy (
) = 10.08 KJ
Energy needed to convert liquid water into vapor at the boiling point
= 0.030 × 2256 = 67.68 KJ
Thus the total energy needed E =
+ 
E = 10.08 + 67.68
E = 77.78 KJ
This is the value of total energy needed per minute for the humidifier.
= Heat released to cold reservoir
= Heat released to hot reservoir
= maximum amount of work
= temperature of cold reservoir
= temperature of hot reservoir
we know that

eq-1
maximum work is given as
=
- 
using eq-1
=
- 