The source charges' magnitude is signified by the arrows pointing outward. The more arrows there are, the greater is its magnitude. This is because, each arrow represents an electrical force exerted by the source. When you add up all the arrows there is, the electrical force becomes even greater. The answer in descending order would be C > A > B > D.
We actually don't need to know how far he/she is standing from the net, as we know that the ball reaches its maximum height (vertex) at the net. At the vertex, it's vertical velocity is 0, since it has stopped moving up and is about to come back down, and its displacement is 0.33m. So we use v² = u² + 2as (neat trick I discovered just then for typing the squared sign: hold down alt and type 0178 on ur numpad wtih numlock on!!!) ANYWAY....... We apply v² = u² + 2as in the y direction only. Ignore x direction.
IN Y DIRECTION: v² = u² + 2as 0 = u² - 2gh u = √(2gh) (Sub in values at the very end)
So that will be the velocity in the y direction only. But we're given the angle at which the ball is hit (3° to the horizontal). So to find the velocity (sum of the velocity in x and y direction on impact) we can use: sin 3° = opposite/hypotenuse = (velocity in y direction only) / (velocity) So rearranging, velocity = (velocity in y direction only) / sin 3° = √(2gh)/sin 3° = (√(2 x 9.8 x 0.33)) / sin 3° = 49 m/s at 3° to the horizontal (2 sig figs)
Explanation:
It is given that,
Magnetic field, B = 0.5 T
Speed of the proton, v = 60 km/s = 60000 m/s
The helical path followed by the proton shown has a pitch of 5.0 mm, p = 0.005 m
We need to find the angle between the magnetic field and the velocity of the proton. The pitch of the helix is the product of parallel component of velocity and time period. Mathematically, it is given by :





So, the angle between the magnetic field and the velocity of the proton is 50.58 degrees. Hence, this is the required solution.
Hello!
A stretched spring has 5184 J of elastic potential energy and a spring constant of 16,200 N/m. What is the displacement of the spring?
0.57 m
0.64 m
0.80 m
1.25 m
Data:



For a spring (or an elastic), the elastic potential energy is calculated by the following expression:

Where k represents the elastic constant of the spring (or elastic) and x the deformation or displacement suffered by the spring.
Solving:









Answer:
The displacement of the spring = 0.8 m (or 0.80 m)
_________________________________________
I Hope this helps, greetings ... Dexteright02! =)