Answer:

Explanation:
Given:
- initial gauge pressure in the container,

- atmospheric pressure at sea level,

- initial volume,

- maximum pressure difference bearable by the container,

- density of the air,

- density of sea water,

<u>The relation between the change in pressure with height is given as:</u>

where:
dz = height in the atmosphere
= standard value of gravity
<em>Now putting the respective values:</em>



Is the maximum height above the ground that the container can be lifted before bursting. (<em>Since the density of air and the density of sea water are assumed to be constant.</em>)
Formation of an insoluble solid
Explanation:
One of the remarkable visible signs that indicates a precipitation reaction when two solutions are mixed is the formation of an insoluble solid. The insoluble solid formed is the precipitate.
- Precipitates usually forms in single replacement reactions and double replacement or double decomposition reactions.
- They form when two soluble compounds react. One of the product is an insoluble solid in the solution called the precipitate.
- The solubility table helps to predict whether precipitates forms in a reaction.
Learn more:
precipitate brainly.com/question/8896163
#learnwithBrainly
Answer:
a) 
b) 
c) Compressing is easier
Explanation:
Given:
Expression of force:

where:



when the spring is stretched
when the spring is compressed
hence,

a)
From the work energy equivalence the work done is equal to the spring potential energy:
here the spring is stretched so, 
Now,
The spring constant at this instant:



Now work done:



b)
When compressing the spring by 0.05 m
we have, 
<u>The spring constant at this instant:</u>



Now work done:



c)
Since the work done in case of stretching the spring is greater in magnitude than the work done in compressing the spring through the same deflection. So, the compression of the spring is easier than its stretching.
Answer:
A free body diagram with 2 forces: the first pointing downward labeled F Subscript g Baseline 20 N and the second pointing upward labeled F Subscript air Baseline 20 N.
Explanation:
This is because at terminal velocity, the ball stops accelerating and the net force on the ball is zero. For the net force to be zero, equal and opposite forces must act on the ball, so that their resultant force is zero. That is F₁ + F₂ = 0 ⇒ F₁ = -F₂
Since F₁ = 20 N, then F₂ = -F₁ = -20 N
So, if F₁ points upwards since it is positive, then F₂ points downwards since it is negative.
So, a free body diagram with 2 forces: the first pointing downward labeled F Subscript g Baseline 20 N and the second pointing upward labeled F Subscript air Baseline 20 N best describes the ball falling at terminal velocity.