answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Strike441 [17]
1 year ago
7

30) A force produces power P by doing work W in a time T. What power will be produced by a force that does six times as much wor

k in half as much time?
A) 12P
B) 6P
C) P
D) P
E) P
Physics
1 answer:
schepotkina [342]1 year ago
4 0

Answer:

A) 12P

Explanation:

The power produced by a force is given by the equation

P=\frac{W}{T}

where

W is the work done by the force

T is the time in which the work is done

At the beginning in this problem, we have:

W = work done by the force

T = time taken

So the power produced is

P=\frac{W}{T}

Later, the force does six times more work, so the work done now is

W'=6W

And this work is done in half the time, so the new time is

T'=\frac{T}{2}

Substituting into the equation of the power, we find the new power produced:

P'=\frac{W'}{T'}=\frac{6W}{T/2}=12\frac{W}{T}=12P

So, 12 times more power.

You might be interested in
José is pinned against the walls of the Rotor, a ride with a radius of 3.00 meters that spins so fast that the floor can be remo
zaharov [31]

r = radius of the circle of the ride = 3.00 meters

v = linear speed of the person during the ride = 17.0 m/s

m = mass of the person in angular motion in the ride

L = angular momentum of the person in the ride = 3570 kg m²/s

Angular momentum is given as

L = m v r

inserting the values

3570 kg m²/s = m (17 m/s) (3.00 m)

m = 3570 kg m²/s/(51 m²/s)

m = 7 kg

hence the mass comes out to be 7 kg


8 0
1 year ago
A box sliding on a horizontal frictionless surface runs into a fixed spring, compressing it a distance x1 from its relaxed posit
inn [45]

Answer:twice of initial value

Explanation:

Given

spring compresses x_1 distance for some initial speed

Suppose v is the initial speed and k be the spring constant

Applying conservation of energy

kinetic energy converted into spring Elastic potential energy

\dfrac{1}{2}mv^2=\dfrac{1}{2}kx_1^2----1

When speed doubles

\dfrac{1}{2}m(2v)^2=\dfrac{1}{2}kx_2^2----2

divide 1 and 2

\dfrac{1}{4}=\dfrac{x_1^2}{x_2^2}

x_2=2x_1

Therefore spring compresses twice the initial value

   

7 0
1 year ago
The image shows positions of the earth and the moon in which region would an astronaut feel the lightest
trapecia [35]

Answer:

The moon region

Explanation:

This is because there is little to no gravity on the moon. That is where the astronaut would feel the lightest.

5 0
1 year ago
Read 2 more answers
Some hydrogen gas is enclosed within a chamber being held at 200∘c with a volume of 0.0250 m3. the chamber is fitted with a mova
Mrac [35]

Answer: The final volume V₂ of the container is  0.039 m³.

Explanation:

Since the temperature is constant, the gas would expand isothermally.

For isothermal expansion,

P₁V₁=P₂V₂

Where, P₁ and P₂ are the initial and final pressure and V₁ and V₂ are initial and final volume.

It is given that:

V₁ = 0.0250 m³

P₁ = 1.5 × 10⁶ Pa

P₂ = 0.950 × 10⁶ Pa

V₂ = ?

⇒ 1.5 × 10⁶ Pa × 0.0250 m³ = 0.950 × 10⁶ Pa × V₂

⇒V₂ = 0.039 m³

Hence, the final volume V₂ of the container is  0.039 m³.

4 0
1 year ago
8. Rubbing a plastic bag and a balloon with a cloth gives both objects a net negative charge. The balloon's
Dafna1 [17]

Answer:

0.214 m

Explanation:

In order for the bag to levitate and not fall down, the electrostatic force between the bag and the balloon must balance the weight of the bag.

Therefore, we can write:

k\frac{q_1 q_2}{r^2}=mg

where

k is the Coulomb constant

q_1=-1\cdot 10^{-10}C is the charge on the balloon

q_2=-1\cdot 10^{-5} C is the charge on the bag

r is the separation betwen the bag and the balloon

m=0.02 g=2\cdot 10^{-5} kg is the mass of the bag

g=9.8 m/s^2 is the acceleration due to gravity

Solving for r, we find the distance at which the bag must be held:

r=\sqrt{\frac{kq_1 q_2}{mg}}=\sqrt{\frac{(9\cdot 10^9)(-1\cdot 10^{-10})(-1\cdot 10^{-5})}{(2\cdot 10^{-5})(9.8)}}=0.214 m

5 0
1 year ago
Other questions:
  • A blue puck has a velocity of 3i –4j m/s. Its mass is 20 kg. What is its momentum?
    6·2 answers
  • what velocity must a 1340kg car have in order to havw the same momentum as a 2680 kg truck traveling at a velocity of 15m/s to t
    12·1 answer
  • A motorist inflates the tires of her car to a pressure of 180 kPa on a day when the temperature is -8.0° C. When she arrives at
    9·1 answer
  • Which of the following quantities provide enough information to calculate the tension in a string of mass per unit length μ that
    13·1 answer
  • A wire carrying a current of 10 A and 2 m in length is placed in a field of flux density 0.15 T. What’s the force on the wire if
    5·1 answer
  • De Vico Comet orbits the Sun every 74.0 years and has an orbital eccentricity of 0.96. Find the comet's average distance from th
    5·1 answer
  • Calculate the time taken by the light to pass through a nucleus of diameter 1.56 10 -16 m. (speed of light is 3 10 8 m/s)
    10·1 answer
  • To open a door, you apply a force of 10 N on the door knob, directed normal to the plane of the door. The door knob is 0.9 meter
    10·1 answer
  • Which option is part of designing a set of experimental procedures?
    11·1 answer
  • A student determines the density, solubility, and boiling point of two liquids, Liquid 1 and Liquid 2. Then he stirs the two liq
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!