answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Fed [463]
2 years ago
6

What is latent heat? A. energy released or absorbed to change the kinetic energy of a substance B. energy released or absorbed t

o change the pressure of a substance C. energy released or absorbed to change the temperature of a substance D. energy released or absorbed to change the phase of a substance
Physics
2 answers:
kkurt [141]2 years ago
6 0

the heat required to convert a solid into a liquid or vapor, or a liquid into a vapor, without change of temperature. hope this helps

Dmitrij [34]2 years ago
5 0

The correct choice is

D. energy released or absorbed to change the phase of a substance.

By definition, latent heat is the amount of heat required by an object to change from one state to another. for example : heat required for 1 g of ice at 0 °C converts to water at 0 °C is 334 J.  heat required for 1 g of water at 100 °C to vaporize is 2230 J.

You might be interested in
A guitar string has a linear density of 8.30 ✕ 10−4 kg/m and a length of 0.660 m. the tension in the string is 56.7 n. when the
Sedbober [7]
Ans: Beat Frequency = 1.97Hz

Explanation:
The fundamental frequency on a vibrating string is 

f =   \sqrt{ \frac{T}{4mL} }<span>  -- (A)</span>

<span>here, T=Tension in the string=56.7N,
L=Length of the string=0.66m,
m= mass = 8.3x10^-4kg/m * 0.66m = 5.48x10^-4kg </span>


Plug in the values in Equation (A)

<span>so </span>f = \sqrt{ \frac{56.7}{4*5.48*10^{-4}*0.66} }<span> = 197.97Hz </span>

<span>the beat frequency is the difference between these two frequencies, therefore:
Beat frequency = 197.97 - 196.0 = 1.97Hz
-i</span>
3 0
2 years ago
Read 2 more answers
4. A cylindrical tube has a length of 14.4cm and a radius of 1.5cm and is filled with a colorless gas. If the density of the gas
professor190 [17]

Answer:

Mass, m of gas is 0.2504 grams.

Explanation:

First, we need to solve for the volume of the cylindrical tube.

Volume of cylinder is given by the formula;

V = 2\Pi r^{2}h

Where, V represents volume.

π represents pie

r represents radius.

h represents height or length.

Given the following data;

Radius, r = 1.5cm

Length, h = 14.4cm

Density, d = 0.00123g/cm³

Substituting into the equation;

V = 2 * 3.142 * (1.5)^{2}14.4

V = 2 * 3.142 * 2.25 * 14.4

V = 203. 6016

Therefore, the volume of the cylindrical tube is 203. 6016cm³

Density can be defined as mass all over the volume of an object.

Simply stated, density is mass per unit volume of an object.

Mathematically, density is given by the formula;

Density = \frac{mass}{volume}

Mass = density  *  volume

Substituting into the equation, we have;

Mass = 0.00123 * 203. 6016

Mass = 0.2504g.

5 0
2 years ago
A sample of an unknown volatile liquid was injected into a Dumas flask (mflask = 27.0928 g, Vflask = 0.1040 L) and heated until
NNADVOKAT [17]

Answer:

The gas was Hexane

Explanation:

taking the diference between the mass of the flask and the final mass qe can calculate the mass of liquid injected (assuming none escaped the flask):

m_{l}  = 27.4593g - 27.0928g = 0.3665g

with the volume of the flask we can get the density of the gas at the indicated pressure and temperature:

d_{g}  = \frac{0.3665 g}{0.1040L} = 3.524 g/L

From the ideal gases law we have that the density can be calculated as:

d_{g}  = \frac{P*M}{R*T}

Where R is the ideal gases constant = , and M the molecular weight of the fluid. Solving for M:

M=\frac{d_{g}*R*T}{P}=\frac{3.524g/L*0,082atmL/molK*291K}{0.976atm}

M=86.16 g/mol

Note that the temperature is computed in Kelvin T= 18+273=291K

The gas with the closer molar mass is Hexane

4 0
2 years ago
The Bernoulli equation is valid for steady, inviscid, incompressible flows with a constant acceleration of gravity. Consider flo
irina1246 [14]

Answer:

p+\frac{1}{2}ρV^{2}+ρg_{0}z-\frac{1}{2}ρcz^{2}=constant

Explanation:

first write the newtons second law:

F_{s}=δma_{s}

Applying bernoulli,s equation as follows:

∑δp+\frac{1}{2} ρδV^{2} +δγz=0\\

Where, δp is the pressure change across the streamline and V is the fluid particle velocity

substitute ρg for {tex]γ[/tex] and g_{0}-cz for g

dp+d(\frac{1}{2}V^{2}+ρ(g_{0}-cz)dz=0

integrating the above equation using limits 1 and 2.

\int\limits^2_1  \, dp +\int\limits^2_1 {(\frac{1}{2}ρV^{2} )} \, +ρ \int\limits^2_1 {(g_{0}-cz )} \,dz=0\\p_{1}^{2}+\frac{1}{2}ρ(V^{2})_{1}^{2}+ρg_{0}z_{1}^{2}-ρc(\frac{z^{2}}{2})_{1}^{2}=0\\p_{2}-p_{1}+\frac{1}{2}ρ(V^{2}_{2}-V^{2}_{1})+ρg_{0}(z_{2}-z_{1})-\frac{1}{2}ρc(z^{2}_{2}-z^{2}_{1})=0\\p+\frac{1}{2}ρV^{2}+ρg_{0}z-\frac{1}{2}ρcz^{2}=constant

there the bernoulli equation for this flow is p+\frac{1}{2}ρV^{2}+ρg_{0}z-\frac{1}{2}ρcz^{2}=constant

note: ρ=density(ρ) in some parts and change(δ) in other parts of this equation. it just doesn't show up as that in formular

4 0
2 years ago
Determine the specific volume of refrigerant-134a at 1 MPa and 50°C, using (a) the ideal-gas equation of state and (b) the gener
Andrej [43]

Answer:

( a ) The specific volume by ideal gas equation = 0.02632 \frac{m^{3} }{kg}

% Error =  20.75 %

(b) The value of specific volume From the generalized compressibility chart = 0.0142 \frac{m^{3} }{kg}

% Error =  - 34.85 %

Explanation:

Pressure = 1 M pa

Temperature = 50 °c = 323 K

Gas constant ( R ) for refrigerant = 81.49 \frac{J}{kg k}

(a). From ideal gas equation P V = m R T ---------- (1)

⇒ \frac{V}{m} = \frac{R T}{P}

⇒ Here \frac{V}{m} = Specific volume = v

⇒ v =  \frac{R T}{P}

Put all the values in the above formula we get

⇒ v = \frac{323}{10^{6} } ×81.49

⇒ v = 0.02632 \frac{m^{3} }{kg}

This is the specific volume by ideal gas equation.

Actual value = 0.021796 \frac{m^{3} }{kg}

Error =  0.02632 - 0.021796 =   0.004524 \frac{m^{3} }{kg}

% Error =  \frac{0.004524}{0.021796} × 100

% Error =  20.75 %

(b). From the generalized compressibility chart the value of specific volume

 \frac{V}{m} = v = 0.0142 \frac{m^{3} }{kg}

The actual value = 0.021796 \frac{m^{3} }{kg}

Error = 0.0142 - 0.021796 =  \frac{m^{3} }{kg}

% Error = \frac{- 0.0076}{0.021796} × 100

% Error =  - 34.85 %

3 0
2 years ago
Other questions:
  • In two separate double slit experiments, an interference pattern is observed on a screen. In the first experiment, violet light
    10·1 answer
  • Which, if any, of the following statements concerning the work done by a conservative force is NOT true? All of these statements
    8·1 answer
  • A watermelon is thrown down from a skyscraper with a speed of 7.0\,\dfrac{\text m}{\text s}7.0 s m ​ 7, point, 0, space, start f
    7·2 answers
  • A steel sphere sits on top of an aluminum ring. The steel sphere (a= 1.1 x 10^-5/degrees celsius) has a diameter of 4.000 cm at
    15·1 answer
  • At a certain location, a gravitational force with a magnitude of 350 newtons acts on a 70.-kilogram astronaut. What is the magni
    6·1 answer
  • A laser emits two wavelengths (λ1 = 420 nm; λ2 = 630 nm). When these two wavelengths strike a grating with 450 lines/mm, they pr
    13·1 answer
  • One of the great dangers to mountain climbers is an avalanche, in which a large mass of snow and ice breaks loose and goes on an
    5·1 answer
  • The nucleus of an atom has all of the following characteristics except that it
    5·1 answer
  • Step 1, when solving a two dimensional, multi-charge problem, is to define the vectors. Please identify the next five steps, in
    11·2 answers
  • HELP ME ASAP!!!!! A patient in the hospital is undergoing testing. The patient's brain is sending electrical signals to motor ne
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!