answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dezoksy [38]
2 years ago
8

The angular width of localizers varies between ______ and ______ degrees in order to provide a signal width of approximately 700

feet at the runway thresholds.
Physics
1 answer:
natali 33 [55]2 years ago
5 0

Answer: 10 and 35 degrees

Explanation: Localizers width below 10 degree and 35 degree signal arc is unreliable and considered unusable for navigation and as a result, aircrafts may loose alignment

You might be interested in
Alan wrote the following examples of changes in substance.
Yuliya22 [10]
A campfire being lighted and plants converting carbon-dioxide and water into glucose and oxygen are both forms of chemical change.

Therefore, the answer is:

B. Both are examples of chemical change.
5 0
2 years ago
Read 2 more answers
A shot putter releases the shot some distance above the level ground with a velocity of 12.0 m/s, 51.0 ∘above the horizontal. Th
alina1380 [7]

A) Zero

The motion of the shot is a projectile's motion: this means that there is only one force acting on the projectile, which is gravity. However, gravity only acts in the vertical direction: so, there are no forces acting in the horizontal direction. Therefore, the x-component of the acceleration is zero.

B) -9.8 m/s^2

The vertical acceleration is given by the only force acting in the vertical direction, which is gravity:

F=mg

where m is the projectile's mass and g is the gravitational acceleration. Therefore, the y-component of the shot's acceleration is equal to the acceleration due to gravity:

a_y = g = -9.8 m/s^2

where the negative sign means it points downward.

C) 7.6 m/s

The x-component of the shot's velocity is given by:

v_x = v_0 cos \theta

where

v_0 = 12.0 m/s is the initial velocity

\theta=51.0^{\circ} is the angle of the shot

Substituting into the equation, we find

v_x = (12.0 m/s)(cos 51^{\circ})=7.6 m/s

D) 9.3 m/s

The y-component of the shot's velocity is given by:

v_y = v_0 sin \theta

where

v_0 = 12.0 m/s is the initial velocity

\theta=51.0^{\circ} is the angle of the shot

Substituting into the equation, we find

v_y = (12.0 m/s)(sin 51^{\circ})=9.3 m/s

E) 7.6 m/s

We said at point A) that the acceleration along the x-direction is zero: therefore, the velocity along the x-direction does not change, so the x-component of the velocity at the end of the trajectory is equal to the x-velocity at the beginning:

v_x = 7.6 m/s

F) -11.1 m/s

The y-component of the velocity at time t is given by:

v_y(t) = v_y + at

where

v_y = 9.3 m/s is the initial y-velocity

a = g = -9.8 m/s^2 is the vertical acceleration

t is the time

Since the total time of the motion is t=2.08 s, we can substitute this value into the equation, and we find:

v_y(2.08 s)=9.3 m/s + (-9.8 m/s^2)(2.08 s)=-11.1 m/s

where the negative sign means the vertical velocity is now downward.

3 0
2 years ago
A 65 kg students is walking on a slackline, a length of webbing stretched between two trees. the line stretches and sags so that
polet [3.4K]

Answer : Tension in the line = 936.7 N

Explanation :

It is given that,

Mass of student, m = 65 kg

The angle between slackline and horizontal, \theta=20^0

The two forces that acts are :

(i) Tension

(ii) Weight

So, from the figure it is clear that :

mg=2T\ sin\ \theta

T=\dfrac{mg}{2\ sin\theta}

T=\dfrac{65\ kg\times 9.8\ m/s^2}{2(sin\ 20)}

T=936.7\ N

Hence, this is the required solution.

5 0
2 years ago
Read 2 more answers
A 4 cm diameter "bobber" with a mass of 3 grams floats on a pond. A thin, light fishing line is tied to the bottom of the bobber
Tasya [4]

Answer:

Explanation:

Calculate the volume of the lead

V=\frac{m}{d}\\\\=\frac{10g}{11.3g'cm^3}

Now calculate the bouyant force acting on the lead

F_L = Vpg

F_L=(\frac{10g}{11.3g/cm^3} )(1g/cm^3)(9.8m/s^2)\\\\=8.673\times 10^{-3}N

This force will act in upward direction

Gravitational force on the lead due to its mass  will act in downward direction

Hence the difference of this two force

T=mg-F_L\\\\=(10\times10^{-3}kg(9.8m/s^2)-8.673\times 10^{-3}\\\\=8.933\times10^{-3}N

If V is the volume submerged in the water then bouyant force on the bobber is

F_B=V'pg

Equate bouyant force with the tension and gravitational force

F_B=T_mg\\\\V'pg=\frac{(8.933\times10^{-2}N)+mg}{pg} \\\\V'=\frac{(8.933\times10^{-2}N)+mg}{pg}

Now Total volume of bobble is

\frac{V'}{V^B} =\frac{\frac{(8.933\times10^{-2})+Mg}{pg} }{\frac{4}{3} \pi R^3 }\times100\\\\=\frac{\frac{(8.933\times10^{-2})+(3)(9.8)}{(1000)(9.8)} }{\frac{4}{3} \pi (4.0\times10^{-2})^3 }\times100\\\\

=\large\boxed{4.52 \%}

7 0
2 years ago
If the coefficient of static friction between a table and a uniform massive rope is μs, what fraction of the rope can hang over
astra-53 [7]
Let me give you the procedure like this:
Lets say that F is the fraction of the rope hanging over the table
If its like that then we have to take into account that the <span>friction force keeping on table is given by the following formula:</span>
<span>Ff = u*(1-f)*m*g </span>
and we need to know aso that <span>gravity force pulling off the table Fg is given by this other formula:</span>
<span>Fg = f*m*g </span>
What you need to do is <span>Equate the two and solve for f: </span>

<span>f*m*g = u*(1-f)*m*g </span>
<span>=> f = u*(1-f) = u - uf </span>
<span>=> f + uf = u </span>
=> f = u/(1+u) = fraction of rope
With that you can find the answer

8 0
2 years ago
Read 2 more answers
Other questions:
  • What are the two forces that keep a pendulum swinging?
    13·1 answer
  • A 145-g baseball is thrown so that it acquires a speed of 25 m/s. What was the net work done on the ball to make it reach this s
    10·1 answer
  • Two sinusoidal waves are identical except for their phase. When these two waves travel along the same string, for which phase di
    12·1 answer
  • Which letter correctly identifies the part of the hydrologic cycle that is most directly affected by impervious building materia
    10·1 answer
  • The drawing shows a person (weight W = 588 N, L1 = 0.838 m, L2 = 0.398 m) doing push-ups. Find the normal force exerted by the f
    9·1 answer
  • A climatograph for a tropical grassland or savanna would look different from the climatograph shown for a temperate grassland. D
    6·1 answer
  • An extremely long thin wire carries a uniform linear charge density of 358 nC/m. Find the potential difference between points 5.
    6·1 answer
  • In a rocket-propulsion problem the mass is variable. Another such problem is a raindrop falling through a cloud of small water d
    13·1 answer
  • A car travels north along a straight highway at an average speed of 85 km/h. After driving 2.0 km, the car passes a gas station
    7·1 answer
  • Vinny is on a motorcycle at rest, 200 m away from a ramp that jumps over a gully. Calculate the minimum constant acceleration Vi
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!