Answer:
178200
g mile pounds
Explanation:
Work= Force * Distance= Fh
F=ma=mg where m is mass and g is acceleration due to gravity
Work= 165 pounds *g* 1080 m= 178200
g mile pounds
Answer:
The radius is decreasing at 4 mm/s
Explanation:
The volume of a sphere is:
So, when the volume is 972π mm^3 the radius r is:
r = 9mm
Now, the change rate is given by the derivative:
Where: dV/dt = -324π mm^2/s
r = 9mm
Solving for dr/dt:
dr/dt = -4mm/s
In order to answer this exercise you need to use the formulas
S = Vo*t + (1/2)*a*t^2
Vf = Vo + at
The data will be given as
Vf = final velocity = ?
Vo = initial velocity = 1.4 m/s
a = acceleration = 0.20 m/s^2
s = displacement = 100m
And now you do the following:
100 = 1.4t + (1/2)*0.2*t^2
t = 25.388s
and
Vf = 1.4 + 0.2(25.388)
Vf = 6.5 m/s
So the answer you are looking for is 6.5 m/s
Answer:
Tension in the cable is T = 16653.32 N
Explanation:
Give data:
Cross section Area A = 1.3 m^2
Drag coefficient CD = 1.2
Velocity V = 4.3 m/s
Angle made by cable with horizontal =30 degree
Density 
Drag force FD is given as


Drag force = 14422.2 N acting opposite to the motion
As cable made angle of 30 degree with horizontal thus horizontal component is take into action to calculate drag force
TCos30 = F_D


T = 16653.32 N
Answer:
To increase the maximum kinetic energy of electrons to 1.5 eV, it is necessary that ultraviolet radiation of 354 nm falls on the surface.
Explanation:
First, we have to calculate the work function of the element. The maximum kinetic energy as a function of the wavelength is given by:

Here h is the Planck's constant, c is the speed of light,
is the wavelength of the light and W the work function of the element:

Now, we calculate the wavelength for the new maximum kinetic energy:

This wavelength corresponds to ultraviolet radiation. So, to increase the maximum kinetic energy of electrons to 1.5 eV, it is necessary that ultraviolet radiation of 354 nm falls on the surface.