Answer:
Explanation:
40 divided by 10 then which would equal 4. Add the 1.0 , 2 ,and 15 together. Then multply the 60 by 18.0 after you are done dividing the answer is 3 with a remainder of 6.
Answer:
<h3>0.99 m</h3>
Explanation:
Average velocity is the change of rate of displacement with respect to time;
Average velocity = Displacement/Time
Given
Average velocity of the frog = 1.8m/s
Time = 0.55s
Required
Displacement of the frog
Substitute the given parameters into the formula;
1.8 = displacement/0.55
cross multiply
Displacement = 1.8*0.55
Displacement = 0.99 m
Hence the frog's displacement is 0.99m
Answer:
If they are metallic spheres they are connected to earth and a charged body approaches
non- metallic (insulating) spheres in this case are charged by rubbing
Explanation:
For fillers, there are two fundamental methods, depending on the type of material.
If they are metallic spheres, they are connected to earth and a charged body approaches, this induces a charge of opposite sign and of equal magnitude, then it removes the contact to earth and the sphere is charged.
If the non- metallic (insulating) spheres in this case are charged by rubbing with some material or touching with another charged material, in this case the sphere takes half the charge and when separated each sphere has half the charge and with equal sign.
Answer:
a) When its length is 23 cm, the elastic potential energy of the spring is
0.18 J
b) When the stretched length doubles, the potential energy increases by a factor of four to 0.72 J
Explanation:
Hi there!
a) The elastic potential energy (EPE) is calculated using the following equation:
EPE = 1/2 · k · x²
Where:
k = spring constant.
x = stretched lenght.
Let´s calculate the elastic potential energy of the spring when it is stretched 3 cm (0.03 m).
First, let´s convert the spring constant units into N/m:
4 N/cm · 100 cm/m = 400 N/m
EPE = 1/2 · 400 N/m · (0.03 m)²
EPE = 0.18 J
When its length is 23 cm, the elastic potential energy of the spring is 0.18 J
b) Now let´s calculate the elastic potential energy when the spring is stretched 0.06 m:
EPE = 1/2 · 400 N/m · (0.06 m)²
EPE = 0.72 J
When the stretched length doubles, the potential energy increases by a factor of four to 0.72 J
Answer:

Explanation:
First number is
Second number is 
We need to multiply the two numbers.

In scientific notation : 
Hence, this is the required solution.