answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
larisa [96]
2 years ago
8

(a) On the axes below, sketch the graphs of the horizontal and vertical components of the sphere’s velocity as a function of tim

e between , when the sphere is launched and , when the sphere hits the target. Label for the horizontal component of the sphere’s velocity and the vertical component of the sphere’s velocity.

Physics
1 answer:
jeka942 years ago
4 0

Answer:

Two identical spheres are released from a device at time t = 0 from the same ... Sphere A has no initial velocity and falls straight down. ... (b) On the axes below, sketch and label a graph of the horizontal component of the velocity of sphere A and of sphere B as a function of time. ... Which ball has the greater vertical velocity

Explanation:

You might be interested in
Calculate the number of moles in each of the following masses: 0.039 g of palladium 0.0073 kg of tantalum
marysya [2.9K]

Answer:

<em>The number of moles of palladium and tantalum are 0.00037 mole and 0.0000404 mole respectively</em>

Explanation:

Number of mole = reacting mass/molar mass

n = R.m/m.m......................... Equation 1

Where n = number of moles, R.m = reacting mass, m.m = molar mass.

For palladium,

R.m = 0.039 g and m.m = 106.42 g/mol

Substituting theses values into equation 1

n = 0.039/106.42

n = 0.00037 mole

For tantalum,

R.m = 0.0073 and m.m = 180.9 g/mol

Substituting these values into equation 1

n = 0.0073/180.9

n = 0.0000404 mole

<em>Therefore the number of moles of palladium and tantalum are 0.00037 mole and 0.0000404 mole respectively</em>

3 0
2 years ago
Two window washers, Bob and Joe, are on a 3.00 m long, 395 N scaffold supported by two cables attached to its ends. Bob weighs 8
WINSTONCH [101]

Answer:

- the forces on the left hand side is 1.038 kN

- the forces on the right hand side is 1.483 kN

Explanation:

Given the data in the question, as illustrated in the image below;

Length of the scaffold = 3 m

weight of the scaffold = 395 N

Weight of Bob = 805 N and stands 1 m from the left end

weight of washing equipment = 500N and on sits 2 m from the left end

Weight of Joe = 820 N and stand 0.500 m from the right end

so the force on the left cable will be;

T_{left = \frac{1}{3m}[ (805 N)( (3-1) m) + ( 395 N )( \frac{3}{2} m) + ( 500 N )(1m ) + ( 820 N)( 0.500m ) ]

T_{left =  \frac{1}{3m}[ 1610 + 592.5 + 500 + 410 ]

T_{left =  \frac{1}{3m}[ 3112.5 ]

T_{left =  1037.5 N

T_{left =  1.038 kN

Therefore, the forces on the left hand side is 1.038 kN

On the right hand side;

T_{Right =  ( 805 N + 395 N + 500 N + 820 N ) - 1037.5 N

T_{Right =  2520 N - 1037.5 N

T_{Right =  1482.5 N

T_{Right =  1.483 kN

Therefore, the forces on the right hand side is 1.483 kN

5 0
1 year ago
You want to examine the hairy details of your favorite pet caterpillar, using a lens of focal length 8.9 cm 8.9 cm that you just
Zepler [3.9K]

Answer:

The angular magnification is M = 2.808

Explanation:

From the question we are told

           The focal length is  f = 8.9cm

          The near point is n_p = 25.0cm

The angular magnification is mathematically represented as

                          M = \frac{n_p}{f}

Substituting values

                        M = \frac{25}{8.9}

                           = 2.808

4 0
2 years ago
Two people are talking at a distance of 3.0 m from where you are and you measure the sound intensity as 1.1 × 10-7 W/m2. Another
ioda

Answer:

6.1875\times 10^{-8}

Explanation:

Assuming uniform spread of sound with no significant reflections or absorption. We know that sound intensity varies I=\frac {k}{r^{2}} where r is the distance

Since intensity is given then when at 3 m

1.1\times 10^{-7}= \frac {k}{3^{2}}

k=3^{2}\times 1.1\times 10^{-7}= 9.9\times 10^{-7}

Since we have the constant then at 4m

Intensity, I= \frac {9.9\times 10^{-7}}{4^{2}}=6.1875\times 10^{-8}

8 0
2 years ago
What is the frequency of radiation whose wavelength is 11.5 a0 ?
irakobra [83]

Answer:

The frequency of radiation is 2.61 \times 10^{17} s^{-1}

Explanation:

Given:

Wavelength \lambda = 11.5 \times 10^{-10} m

Speed of light c = 3 \times 10^{8} \frac{m}{s}

For finding the frequency of radiation,

  c = f \lambda

  f = \frac{c}{\lambda}

  f = \frac{3 \times 10^{8} }{11.5 \times 10^{-10} }

  f = 2.61 \times 10^{17} s^{-1}

Therefore, the frequency of radiation is 2.61 \times 10^{17} s^{-1}

4 0
2 years ago
Other questions:
  • An elevator is used to either raise or lower sacks of potatoes. In the diagram, a sack of potatoes of mass 10 kg is resting on a
    7·1 answer
  • the distance between the sun and earth is about 1.5X10^11 m. express this distance with an SI prefix and kilometers
    5·1 answer
  • What is the final speed of an object that starts from rest and accelerates uniformly at 4.0 meters per second2 over a distance o
    15·1 answer
  • A 10N force pulls to the right and friction opposes 2N. If the object is 20kg,find the acceleraton.
    9·2 answers
  • Two red blood cells each have a mass of 9.05×10−14 kg and carry a negative charge spread uniformly over their surfaces. The repu
    12·1 answer
  • A ball on a string travels once around a circle with a circumference of 2.0 m. The tension in the string is 5.0 N. how much work
    13·1 answer
  • A string is stretched by two equal and opposite forces F newton each then the tension in sting is?
    7·1 answer
  • Shows the position-versus-time graph of a particle in SHM. Positive direction is the direction to the right.
    6·1 answer
  • Write a hypothesis about the effect of the angle of the track on the acceleration of the cart. Use the "if . . . then . . . beca
    7·1 answer
  • Gretchen runs the first 4.0 km of a race at 5.0 m/s. Then a stiff wind comes up, so she runs the last 1.0 km at only 4.0 m/s.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!