D = V0t + 0.5at^2
Where d is the distance
V0 is the initial velocity
A is the acceleration
T is time
From the graph a = 4/3 m/s2
D = 0(3) + 0.5( 4/3 m/s2) ( 3 s)^2
D = 6 m
The surrounding air will become warm when water vapor condenses. The vapors when become water will give away latent heat they have, we know that latent heat is required for the object to change states, so, the latent heat the water vapor had when it became water vapor from water will be given out when it again becomes water.
Answer:
0.01154 A
Explanation:
We have given the energy in the magnetic field
Value of inductance L =0.060 H
Energy stored in magnetic field is given by 


So the current flowing through rectangular toroid will be 0.01154 A
There are some missing data in the text of the problem. I've found them online:
a) coefficient of friction dry steel piston - steel cilinder: 0.3
b) coefficient of friction with oil in between the surfaces: 0.03
Solution:
a) The force F applied by the person (300 N) must be at least equal to the frictional force, given by:

where

is the coefficient of friction, while N is the normal force. So we have:

since we know that F=300 N and

, we can find N, the magnitude of the normal force:

b) The problem is identical to that of the first part; however, this time the coefficienct of friction is

due to the presence of the oil. Therefore, we have:
Answer:
Force plane exert on pilot = 4270 N
Explanation:
first convert radius and speed to ms
using formula from force we know that
mass = weight/ gravity = 700 N/ 9.8N/kg= 71.4 kg
Fc= N-mg
N= Fc+ mg As Fc = mv²/R
N= mv²/R + mg
taking m common
N= m( v²/R +g)
= 71.4( (200)²/ 800 + 9.8 )
Force = 4270 N