Answer:
Q = ba⁴ * ε₀
Explanation:
From Gauss's Law, we know that
flux Φ = Q / ε₀
where ε₀ = 8.85e-12 C²/N·m²
and also,
Φ = EAcosθ
The field is directed along the x-axis, so that all of the flux passes through the side of the cube at x = a. This means that θ = 0º, and thus
Φ = EAcos0
Φ = EA
E = bx² meanwhile, we are interested in the point where x = a, so we substitute and then
E = ba²
Since A = a² for the cube face, we have
Q / ε₀ = E * A
Q / ε₀ = ba² * a²
so that
Q = ba⁴ * ε₀
Shear stress = 1.0 N/m² (Pa)
For water, the dynamic viscosity = 10⁻³ Pa-s at 20°C.
The velocity gradient required = (Shear stress)/(Dynamic viscosity)
= (1.0 Pa)/( 10⁻³ Pa-s)
= 10³ 1/s
Answer: 10³ s⁻¹
Answer:
The water will flow at a speed of 3,884 m/s
Explanation:
Torricelli's equation
v = 
*v = liquid velocity at the exit of the hole
g = gravity acceleration
h = distance from the surface of the liquid to the center of the hole.
v =
= 3,884 m/s
Answer:
a. y(x,t)= 2.05 mm cos[( 6.98 rad/m)x + (744 rad/s).
b. third harmonic
c. to calculate frequency , we compare with general wave equation
y(x,t)=Acos(kx+ωt)
from ωt=742t
ω=742
ω=2*pi*f
742/2*pi
f=118.09Hz
Explanation:
A fellow student of mathematical bent tells you that the wave function of a traveling wave on a thin rope is y(x,t)=2.30mmcos[(6.98rad/m)x+(742rad/s)t]. Being more practical-minded, you measure the rope to have a length of 1.35 m and a mass of 3.38 grams. Assume that the ends of the rope are held fixed and that there is both this traveling wave and the reflected wave traveling in the opposite direction.
A) What is the wavefunction y(x,t) for the standing wave that is produced?
B) In which harmonic is the standing wave oscillating?
C) What is the frequency of the fundamental oscillation?
a. y(x,t)= 2.05 mm cos[( 6.98 rad/m)x + (744 rad/s).
b. lambda=2L/n
when comparing the wave equation with the general wave equation , we get the wavelength to be
2*pi*x/lambda=6.98x
lambda=0.9m
we use the equation
lambda=2L/n
n=number of harmonics
L=length of string
0.9=2(1.35)/n
n=2.7/0.9
n=3
third harmonic
c. to calculate frequency , we compare with general wave equation
y(x,t)=Acos(kx+ωt)
from ωt=742t
ω=742
ω=2*pi*f
742/2*pi
f=118.09Hz
Answer
given,
mass of the person, m = 50 Kg
length of scaffold = 6 m
mass of scaffold, M= 70 Kg
distance of person standing from one end = 1.5 m
Tension in the vertical rope = ?
now equating all the vertical forces acting in the system.
T₁ + T₂ = m g + M g
T₁ + T₂ = 50 x 9.8 + 70 x 9.8
T₁ + T₂ = 1176...........(1)
system is equilibrium so, the moment along the system will also be zero.
taking moment about rope with tension T₂.
now,
T₁ x 6 - mg x (6-1.5) - M g x 3 = 0
'3 m' is used because the weight of the scaffold pass through center of gravity.
6 T₁ = 50 x 9.8 x 4.5 + 70 x 9.8 x 3
6 T₁ = 4263
T₁ = 710.5 N
from equation (1)
T₂ = 1176 - 710.5
T₂ = 465.5 N
hence, T₁ = 710.5 N and T₂ = 465.5 N