answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Agata [3.3K]
2 years ago
10

A Honda Civic and an 18 wheeler approach a right angle intersection and then collide. After the collision, they become interlock

ed. If their mass ratios were 1: 4 and their respective speeds as they approached were both 13 m/s, find the magnitude and direction of the final velocity of the wreck. (Please do not worry no one was harmed in making of this question) A. 16.3 m/s at 79° B. 10.7 m/s at 79° C. 12.5 m/s at 59° D. 15.7 m/s at 59°
Physics
1 answer:
Goryan [66]2 years ago
8 0

Answer:

The concept of conservation of momentum is applied in the particular case of collisions.  

The general equation ig given by,

M_1V_1 + M_2V_2 = (M_1+M_2) * V_f,

Where,

M_2 = 4 M_1

The crash occurs at an intersection so we must separate the two speeds by their respective vector: x, y.

In the case of the X axis, we have that the body M_2 has a speed = 0, this because it is not the direction in which it travels, therefore

M_1* 13 = (M_1+M_2) * V_{fx} \\M_1*13 = (M_1+4M_1)*V_{fx}\\M_1*13=5M_1*V_{fx}\\Vx = \frac{13}{5}m/s

The same analysis must be given for the particular case in the Y direction, where the mass body M_1 does not act with its velocity here, therefore:

M_2* 13 = (M_1+M_2) * V_{fy},\\4*M_1* 13 = 5Ma * V_{fy} ,\\V_{fy} = \frac{52}{5}m/s ,

We have the two components of a velocity vector given by V_f = \frac{13}{5}\hat{i} + \frac{52}{5}\hat{j}

Get the magnitude,

V_f = \sqrt{(\frac{13}{5})^2+(\frac{52}{5})^2}

V_f = 10.72 m/s

With a direction given by

Tan^{-1} \frac{4}{1} = 75.96 \°

You might be interested in
A long, straight wire carrying a current of 3.45 A moves with a constant speed v to the right. A 5-turn circular coil of diamete
d1i1m1o1n [39]

Answer:

I = 69.3  μA

Explanation:

Current through the straight wire, I = 3.45 A

Number of turns, N = 5 turns

Diameter of the coil, D = 1.25 cm

Resistance of the coil, R = 3.25 \mu ohms

Distance of the wire from the center of the coil, d = 20 cm = 0.2 m

The magnetic field, B₁, when the wire is at a distance, d, from the center of the coil.

B_{1} = \frac{\mu_{0}I }{2\pi d}

B_{1} = \frac{4\pi* 10^{-7}  *3.45 }{2\pi *0.2}\\B_{1} =0.00000345 T

Magnetic field B₂ when the wire is at a distance, 2d from the center of the coil

B_{2} = \frac{\mu_{0}I }{2\pi(2d)) } \\B_{2} = \frac{\mu_{0}I }{4\pi d } \\

B_{2} = \frac{4\pi* 10^{-7}  *3.45 }{2\pi *2*0.2}\\B_{2} = 0.000001725 T

Change in the magnetic field, ΔB = B₂ - B₁ = 0.00001725 - 0.0000345

ΔB = -0.000001725

Induced current, I = \frac{E}{R}

E = -N (Δ∅)/Δt

Δ∅ = A ΔB

Area, A = πr²

diameter, d = 0.0125 m

Radius, r = 0.00625 m

A = π* 0.00625²

A = 0.0001227 m²

Δ∅ =  -0.000001725 * 0.0001227

Δ∅ = -211.6575 * 10⁻¹²

E = -N (Δ∅)/Δt

E = -5\frac{-211.6575 * 10^{-12} }{4.70} \\E = 225.17 * 10^{-12} V

Resistance, R = 3.25 μ ohms = 3.25 * 10⁻⁶ ohms

I = E/R

I = \frac{225.17 * 10^{-12} }{3.25 * 10^{-6} }

I = 0.0000693 A

I = 69 .3 * 10⁻⁶A

I = 69.3  μA

3 0
2 years ago
How does the sun transfer energy to Earth?
aleksley [76]

Answer:

By electromagnetic waves.

Explanation:

The sun transfers heat to earth via electromagnetic waves  in twomajor  ways:

Radiation- this is the transfer of energy by invisible electromagnetic ways.

Convection-The radiant sun energy warms the atmosphere and becomes heat energy. This transfer of heat through movement of fluids or usually air is called convection.

4 0
2 years ago
Read 2 more answers
Suppose you push a hockey puck of mass m across frictionless ice for a time 1.0 s, starting from rest, giving the puck speed v a
EleoNora [17]
Newton's second law ...Force = momentum change/time.momentum change = Forcextme.also, F=ma -> a=F/m - the more familiar form of Newton's second law
using one of the kinematic equations for m ...  V=u+at; u=0; a=F/m -> V=(F/m)xt.-> t=mV/F using one of the kinematic equations for 2m ... V=u+at; u=0; a=F/2m -> V=(F/2m)xt. -> t=2mV/F (twice as long, maybe ?)
I think I've made a mistake somewhere below, but I think that the principle is right ...using one of the kinematic equations for m ...  s=ut + (1/2)at^2); s=d;u=0;a=F/m; t=1;  -> d=(1/2)(F/m)=F/2musing one of the kinematic equations for 2m ...  s=ut + (1/2)at^2); s=d;u=0;a=F/2m; t=1;  -> d=(1/2)(F/2m)=F/4m (half as far ????? WHAT ???)
3 0
2 years ago
Read 2 more answers
The equilibrium fraction of lattice sites that are vacant in silver (Ag) at 600°C is 1 × 10-6. Calculate the number of vacancies
algol [13]

Answer :

The number of vacancies (per meter cube) = 5.778 × 10^22/m^3.

Explanation:

Given,

Atomic mass of silver = 107.87 g/mol

Density of silver = 10.35 g/cm^3

Converting to g/m^3,

= 10.35 g/cm^3 × 10^6cm^3/m^3

= 10.35 × 10^6 g/m^3

Avogadro's number = 6.022 × 10^23 atoms/mol

Fraction of lattice sites that are vacant in silver = 1 × 10^-6

Nag = (Na * Da)/Aag

Where,

Nag = Total number of lattice sites in Ag

Na = Avogadro's number

Da = Density of silver

Aag = Atomic weight of silver

= (6.022 × 10^23 × (10.35 × 10^6)/107.87

= 5.778 × 10^28 atoms/m^3

The number of vacancies (per meter cube) = 5.778 × 10^28 × 1 × 10^-6

= 5.778 × 10^22/m^3.

6 0
2 years ago
The operator of a space station observes a space vehicle approaching at a constant speed v. The operator sends a light signal at
GenaCL600 [577]

Answer:

The speed of the light signal as viewed from the observer is c.

Explanation:

Recall the basic postulate of the theory of relativity that the speed of light is the same in ALL inertial frames. Based on this, the speed of light is independent of the motion of the observer.

5 0
2 years ago
Other questions:
  • A positive charge moving up enters a magnetic field pointing out of the screen. What is the direction of the magnetic force on t
    13·2 answers
  • A bottle lying on the windowsill falls off and takes 4.95 seconds to reach the ground. The distance from the windowsill to the g
    8·1 answer
  • A backyard swimming pool with a circular base of diameter 6.00 m is filled to depth 1.50 m. (a) Find the absolute pres- sure at
    6·1 answer
  • The gravitational field strength at a distance R from the center of moon is gR. The satellite is moved to a new circular orbit t
    9·1 answer
  • UDAY WAS TOLD TO PUT SOME CONTAINERS IN ONE OF THE COLD STORES AT WORK. THE LABLES ON THE CONTAINERS READ STORE BELOW -5 C.THERE
    13·1 answer
  • A disk of known radius and rotational inertia can rotate without friction in a horizontal plane around its fixed central axis. T
    7·1 answer
  • The integral with respect to time of a force applied to an object is a measure called impulse, and the impulse applied to an obj
    7·1 answer
  • E. Describe in short the structure of a mercury barometer<br>​
    5·1 answer
  • In a novel from 1866 the author describes a spaceship that is blasted out of a cannon with a speed of about 11.000 m/s. The spac
    13·1 answer
  • Two spherical objects have masses of 200 kg and 500 kg. Their centers are separated by a distance of 25 m. Find the gravitationa
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!