Answer:
0.056 psi more pressure is exerted by filled coat rack than an empty coat rack.
Explanation:
First we find the pressure exerted by the rack without coat. So, for that purpose, we use formula:
P₁ = F/A
where,
P₁ = Pressure exerted by empty rack = ?
F = Force exerted by empty rack = Weight of Empty Rack = 40 lb
A = Base Area = 452.4 in²
Therefore,
P₁ = 40 lb/452.4 in²
P₁ = 0.088 psi
Now, we calculate the pressure exerted by the rack along with the coat.
P₂ = F/A
where,
P₂ = Pressure exerted by rack filled with coats= ?
F = Force exerted by filled rack = Weight of Filled Rack = 65 lb
A = Base Area = 452.4 in²
Therefore,
P₂ = 65 lb/452.4 in²
P₂ = 0.144 psi
Now, the difference between both pressures is:
ΔP = P₂ - P₁
ΔP = 0.144 psi - 0.088 psi
<u>ΔP = 0.056 psi</u>
Most likely the answer is b
Answer:
The magnitude of the magnetic force exerted on the moving charge by the current in the wire is 2.18 x
N
The direction of the magnetic force exerted on the moving charge by the current in the wire is radially inward
Explanation:
given information:
current, I = 3 A
= +6.5 x
C
r = 0.05 m
v = 280 m/s
and direction of the magnetic force exerted on the moving charge by the current in the wire, we can use the following formula:
F = qvB sin θ
where
F = magnetic force (N)
q = electric charge (C)
v = velocity (m/s)
θ = the angle between the velocity and magnetic field
to find B we use
B = μ
I/2πr
μ
= 4π x
or 1.26 x
N/
, thus
B = 4π x
x 3 / 2π(0.05)
= 1.2 x
T
Now, we can calculate the magnitude force
F = qvB sin θ
θ = 90°, because the speed and magnetic are perpendicular
F = 6.5 x
x 280 x 1.2 x
sin 90°
= 2.18 x
N
Using the hand law, the magnetic direction is radially inward
Answer:
457.81 Hz
Explanation:
From the question, it is stated that it is a question under Doppler effect.
As a result, we use this form
fo = (c + vo) / (c - vs) × fs
fo = observed frequency by observer =?
c = speed of sound = 332 m/s
vo = velocity of observer relative to source = 45 m/s
vs = velocity of source relative to observer = - 46 m/s ( it is taking a negative sign because the velocity of the source is in opposite direction to the observer).
fs = frequency of sound wave by source = 459 Hz
By substituting the the values to the equation, we have
fo = (332 + 45) / (332 - (-46)) × 459
fo = (377/ 332 + 46) × 459
fo = (377/ 378) × 459
fo = 0.9974 × 459
fo = 457.81 Hz
Answer:
The value of total energy needed per minute for the humidifier = 77.78 KJ
Explanation:
Total energy per minute the humidifier required = Energy required to heat water to boiling point) + Energy required to convert liquid water into vapor at the boiling point) ----- (1)
Specific heat of water = 4190 
The heat of vaporization is = 2256 
Mass = 0.030 kg
Energy needed to heat water to boiling point = 
Energy needed to heat water to boiling point = 0.030 × 4.19 × (100 - 20)
Energy (
) = 10.08 KJ
Energy needed to convert liquid water into vapor at the boiling point
= 0.030 × 2256 = 67.68 KJ
Thus the total energy needed E =
+ 
E = 10.08 + 67.68
E = 77.78 KJ
This is the value of total energy needed per minute for the humidifier.