<span>It's pretty easy problem once you set it up.
Earth------------P--------------Moon
"P" is where the gravitational forces from both bodies are acting equally on a mass m
Let's define a few distances.
Rep = distance from center of earth to P
Rpm = distance from P to center of moon
Rem = distance from center of earth to center of moon
You are correct to use that equation. If the gravitational forces are equal then
GMearth*m/Rep² = Gm*Mmoon/Rpm²
Mearth/Mmoon = Rep² / Rpm²
Since Rep is what you're looking for we can't touch that. We can however rewrite Rpm to be
Rpm = Rem - Rep
Mearth / Mmoon = Rep² / (Rem - Rep)²
Since Mmoon = 1/81 * Mearth
81 = Rep² / (Rem - Rep)²
Everything is done now. The most complicated part now is the algebra,
so bear with me as we solve for Rep. I may skip some obvious or
too-long-to-type steps.
81*(Rem - Rep)² = Rep²
81*Rep² - 162*Rem*Rep + 81*Rem² = Rep²
80*Rep² - 162*Rem*Rep + 81*Rem² = 0
We use the quadratic formula to solve for Rep:
Rep = (81/80)*Rem ± (9/80)*Rem
Rep = (9/8)*Rem and (9/10)*Rem
Obviously, point P cannot be 9/8 of the way to the moon because it'll be
beyond the moon. Therefore, the logical answer would be 9/10 the way
to the moon or B.
Edit: The great thing about this idealized 2-body problem, James, is
that it is disguised as a problem where you need to know a lot of values
but in reality, a lot of them cancel out once you do the math. Funny
thing is, I never saw this problem in physics during Freshman year. I
saw it orbital mechanics in my junior year in Aerospace Engineering. </span>
sylent_reality
· 8 years ago
Answer:
Explanation:
We define the linear density of charge as:

Where L is the rod's length, in this case the semicircle's length L = πr
The potential created at the center by an differential element of charge is:

where k is the coulomb's constant
r is the distance from dq to center of the circle
Thus.

Potential at the center of the semicircle
Answer:
<em>Entropy Change = 0.559 Times</em>
Explanation:
Entropy change is determined by the change in the micro-states of a system. As we know that the micro-states are the same as measure of disorderness between initial and final states, that's the the amount of change in micro-states determine how much of entropy has changed in the system.