answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Furkat [3]
1 year ago
14

A professor's office door is 0.99 m wide, 2.2 m high, 4.2 cm thick; has a mass of 27 kg, and pivots on frictionless hinges. A "d

oor closer" is attached to door and the top of the door frame. When the door is open and at rest, the door closer exerts a torque of 5.6 N*m. What is the moment of inertia of the door? If you let go of the open door, what is its angular acceleration immediately afterward?
Physics
1 answer:
ANEK [815]1 year ago
6 0

Answer:

I=8.8209\ kg.m^2

\alpha=0.6348\ rad.s^{-2}

Explanation:

Given:

  • width of door, w=0.99\ m
  • height of the door, h=2.2\ m
  • thickness of the door, t=4.2\ cm
  • mass of the door, m=27\ kg
  • torque on the door, \tau=5.6\ N.m

<em>∵Since the thickness of the door is very less as compared to its other dimensions, therefore we treat it as a rectangular sheet.</em>

  • For a rectangular sheet we have the mass moment of inertia inertia as:

I=\frac{1}{3} m.w^2

I=\frac{1}{3}\times 27\times 0.99^2

I=8.8209\ kg.m^2

We have a relation between mass moment of inertia, torque and angular acceleration as:

\alpha=\frac{\tau}{I}

\alpha=\frac{5.6}{8.8209}

\alpha=0.6348\ rad.s^{-2}

You might be interested in
A pair of glasses is dropped from the top of a 32.0m stadium. A pen is dropped 2.Os later. How high above the ground is the pen
Svetllana [295]

Answer:

h_p = 30.46\ m

Explanation:

<u>Free Fall Motion</u>

A free-falling object refers to an object that is falling under the sole influence of gravity. If the object is dropped from a certain height h, it moves downwards until it reaches ground level.

The speed vf of the object when a time t has passed is given by:

v_f=g\cdot t

Where g = 9.8 m/s^2

Similarly, the distance y the object has traveled is calculated as follows:

\displaystyle y=\frac{g\cdot t^2}{2}

If we know the height h from which the object was dropped, we can solve the above equation for t:

\displaystyle t=\sqrt{\frac{2\cdot y}{g}}

The stadium is h=32 m high. A pair of glasses is dropped from the top and reaches the ground at a time:

\displaystyle t_1=\sqrt{\frac{2\cdot 32}{9.8}}=2.56\ sec

The pen is dropped 2 seconds after the glasses. When the glasses hit the ground, the pen has been falling for:

t_2=2.56 - 2 = 0.56\ sec

Therefore, it has traveled down a distance:

\displaystyle y=\frac{9.8\cdot 0.56^2}{2} = 1.54\ m

Thus, the height of the pen is:

h_p = 32 - 1.54\Rightarrow h_p=30.46\ m

8 0
2 years ago
If you wished to warm 100 kg of water by 15 degrees celsius for your bath, how much heat would be required? (give your answer in
Anit [1.1K]
For the answer to the question above, 
<span>Q = amount of heat (kJ) </span>
<span>cp = specific heat capacity (kJ/kg.K) = 4.187 kJ/kgK </span>
<span>m = mass (kg) </span>
<span>dT = temperature difference between hot and cold side (K). Note: dt in °C = dt in Kelvin </span>

<span>Q = 100kg * (4.187 kJ/kgK) * 15 K </span>
<span>Q = 6,280.5 KJ = 6,280,500 J = 1,501,075.5 cal</span>
6 0
1 year ago
Kayla and her friends are setting up chairs for a school play each row will contain the same number of chairs Kayla knows that t
LUCKY_DIMON [66]

Answer:

96=8*c

Explanation:

4 0
1 year ago
The block in the diagram below is AT REST. However, the tension in the cable is not the only thing holding the block back. Stati
Vedmedyk [2.9K]

Answer:

The  tension in the rope is 229.37 N.

Explanation:

Given:

Mass of the block is, m=33.2\ kg

Coefficient of static friction is, \mu = 0.214

Angle of inclination is, \theta = 31.5°

Draw a free body diagram of the block.

From the free body diagram, consider the forces in the vertical direction perpendicular to inclined plane.

Forces acting are mg\cos \theta and normal N. Now, there is no motion in the direction perpendicular to the inclined plane. So,

N=mg\cos \theta\\N=(33.2)(9.8)\cos (31.5)\\N=277.415\ N

Consider the direction along the inclined plane.

The forces acting along the plane are mg\sin \theta and frictional force, f, down the plane and tension, T, up the plane.

Now, as the block is at rest, so net force along the plane is also zero.

T=mg\sin \theta+f\\T=mg\sin \theta +\mu N\\T= (33.2)(9.8)(\sin (31.5)+(0.214\times 277.415)\\T= 170+59.37\\T=229.37\ N

Therefore, the  tension in the rope is 229.37 N.

3 0
1 year ago
Onur drops a basketball from a height of 10\,\text{m}10m10, start text, m, end text on Mars, where the acceleration due to gravi
Doss [256]

Answer:

Explanation:

Given that,

Basket ball is drop from height

H=10m

It is dropped on planet mass

And the acceleration due to gravity on Mars is given as

g= 3.7m/s²

Time taken for the ball to reach the ground

Initial velocity of the body is zero

u=0m/s

Using equation of motion: free fall

H = ut + ½gt²

10 = 0•t + ½ × 3.7 ×t²

10 = 0 + 1.85t²

10 = 1.85t²

Then, t² =10/1.85

t² = 5.405

t = √ 5.405

t = 2.325seconds

So the time the ball spend on the air before reaching the ground is 2.325 seconds

5 0
1 year ago
Other questions:
  • Which of the following would increase the strength of an electromagnet ?
    5·2 answers
  • A 2400-kg satellite is in a circular orbit around a planet. the satellite travels with a constant speed of 6670 m/s. the radius
    6·2 answers
  • Can a small child play with fat child on the seesaw?Explain how?
    14·2 answers
  • A uniform rectangular plate is hanging vertically downward from a hinge that passes along its left edge. By blowing air at 11.0
    9·1 answer
  • Which of the following expressions will have units of kg⋅m/s2? Select all that apply, where x is position, v is velocity, m is m
    10·1 answer
  • A girl rolls a ball up an incline and allows it to re- turn to her. For the angle and ball involved, the acceleration of the bal
    14·1 answer
  • A 50-kg sprinter accelerates from 0 to 11 m/s in 3.0 s. What is the power output for this rapid start?
    12·1 answer
  • The spring is now compressed so that the unconstrained end moves from x=0 to x=L. Using the work integral W=∫xfxiF⃗ (x⃗ )⋅dx⃗ ,
    6·1 answer
  • a spring gun initially compressed 2cm fires a 0.01kg dart straight up into the air. if the dart reaches a height it 5.5m determi
    14·1 answer
  • A bird is flying in a room with a velocity field of . Calculate the temperature change that the bird feels after 9 seconds of fl
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!