Gravitational potential energy is caused when an object is resting above the ground. It is released when the object is falling, not by burning substances.
Explanation:
It is given that,
The distance between the first spot and the central minimum is, s = 0.007 cm
Length, l = 12 m
Wavelength, 
We need to find the width of the hair. Using the condition of diffraction pattern as :
, d is the width of the hair


d = 0.00102
or

So, the width of the hair is
. Hence, this is the required solution.
Answer:
a) amount of kinetic energy converted to internal energy = 2.5 x 10 raised to power 7 Joule
b) Kinetic energy gained by the earth = 2.1 x 10-16J
c) All the kinetic energy is converted to internal energy and the energy is further converted to thermal energy hence the reason for the hotness at around where the meteorite strikes.
Explanation:
The detailed steps and appropriate application of the law of conservation of momentum is as shown in the attached file.
Answer:
The correct option is (B).
Explanation:
The Kepler's third law of motion gives the relationship between the orbital time period and the distance from the semi major axis such that,

It is mentioned that, an asteroid with an orbital period of 8 years. So,

So, an asteroid with an orbital period of 8 years lies at an average distance from the Sun equal to 4 astronomical units.
Answer:
Kinetic energy, E = 133.38 Joules
Explanation:
It is given that,
Mass of the model airplane, m = 3 kg
Velocity component, v₁ = 5 m/s (due east)
Velocity component, v₂ = 8 m/s (due north)
Let v is the resultant of velocity. It is given by :


Let E is the kinetic energy of the plane. It is given by :


E = 133.38 Joules
So, the kinetic energy of the plane is 133.38 Joules. Hence, this is the required solution.