Answer:
57.6Joules
Explanation:
Rotational kinetic energy of a body can be determined using the expression
Rotational kinetic energy = 1/2Iω²where;
I is the moment of inertia around axis of rotation. = 5kgm/s²
ω is the angular velocity = ?
Note that torque (T) = I¶ where;
¶ is the angular acceleration.
I is the moment of inertia
¶ = T/I
¶ = 3.0/5.0
¶ = 0.6rad/s²
Angular acceleration (¶) = ∆ω/∆t
∆ω = ¶∆t
ω = 0.6×8
ω = 4.8rad/s
Therefore, rotational kinetic energy = 1/2×5×4.8²
= 5×4.8×2.4
= 57.6Joules
Answer:
Explanation:
Given that,
Basket ball is drop from height
H=10m
It is dropped on planet mass
And the acceleration due to gravity on Mars is given as
g= 3.7m/s²
Time taken for the ball to reach the ground
Initial velocity of the body is zero
u=0m/s
Using equation of motion: free fall
H = ut + ½gt²
10 = 0•t + ½ × 3.7 ×t²
10 = 0 + 1.85t²
10 = 1.85t²
Then, t² =10/1.85
t² = 5.405
t = √ 5.405
t = 2.325seconds
So the time the ball spend on the air before reaching the ground is 2.325 seconds
Correct option: A
An object remains at rest until a force acts on it.
As the water moves faster, it applies greater force on the sediment, which over comes the frictional forces between the bed and the sediment. So, when the river flows faster, more and larger sediment particles are carried away. When the flow slows down, the river couldn't apply enough force on the larger sediments which can overcome the frictional force between the sediment and the river bed. So, the net force on the heavier particles become zero. Hence, the heavier particles of the load will settle out.
Velocity =
(distance between start point and end point, regardless of the route traveled) / (time spent traveling).
That distance (called the "displacement"), is 10 meters, and almost exactly 1 hour is almost exactly 3,600 seconds. So the numerical value of the velocity during that time is
(10) / (3,600) = almost exactly 0.00278 m/s
= 2.78 x 10^-3 m/s.
Answer:
3.62 m and - 1.4 m
Explanation:
Consider a location towards the positive side of x-axis beyond the location of charge Q₂
x = distance of the location from charge Q₂
d = distance between the two charges = 2 m
For the electric field to be zero at the location
E₁ = Electric field by charge Q₁ at the location = E₂ = Electric field by charge Q₂ at the location


x = 1.62 m
So location is 2 + 1.62 = 3.62 m
Consider a location towards the negative side of x-axis beyond the location of charge Q₁
x = distance of the location from charge Q₁
d = distance between the two charges = 2 m
For the electric field to be zero at the location
E₁ = Electric field by charge Q₁ at the location = E₂ = Electric field by charge Q₂ at the location


x = - 1.4 m