The intensity is defined as the ratio between the power emitted by the source and the area through which the power is calculated:

(1)
where
P is the power
A is the area
In our problem, the intensity is

. At a distance of r=6.0 m from the source, the area intercepted by the radiation (which propagates in all directions) is equal to the area of a sphere of radius r, so:

And so if we re-arrange (1) we find the power emitted by the source:
Answer:
amount of energy = 4730.4 kWh/yr
amount of money = 520.34 per year
payback period = 0.188 year
Explanation:
given data
light fixtures = 6
lamp = 4
power = 60 W
average use = 3 h a day
price of electricity = $0.11/kWh
to find out
the amount of energy and money that will be saved and simple payback period if the purchase price of the sensor is $32 and it takes 1 h to install it at a cost of $66
solution
we find energy saving by difference in time the light were
ΔE = no of fixture × number of lamp × power of each lamp × Δt
ΔE is amount of energy save and Δt is time difference
so
ΔE = 6 × 4 × 365 ( 12 - 9 )
ΔE = 4730.4 kWh/yr
and
money saving find out by energy saving and unit cost that i s
ΔM = ΔE × Munit
ΔM = 4730.4 × 0.11
ΔM = 520.34 per year
and
payback period is calculate as
payback period = 
payback period = 
payback period = 0.188 year
Answer:
circuit sketched in first attached image.
Second attached image is for calculating the equivalent output resistance
Explanation:
For calculating the output voltage with regarding the first image.

![Vout = 5 \frac{2000}{5000}[/[tex][tex]Vout = 5 \frac{2000}{5000}\\Vout = 5 \frac{2}{5} = 2 V](https://tex.z-dn.net/?f=Vout%20%3D%205%20%5Cfrac%7B2000%7D%7B5000%7D%5B%2F%5Btex%5D%3C%2Fp%3E%3Cp%3E%5Btex%5DVout%20%3D%205%20%5Cfrac%7B2000%7D%7B5000%7D%5C%5CVout%20%3D%205%20%5Cfrac%7B2%7D%7B5%7D%20%3D%202%20V)
For the calculus of the equivalent output resistance we apply thevenin, the voltage source is short and current sources are open circuit, resulting in the second image.
so.

Taking into account the %5 tolerance, with the minimal bound for Voltage and resistance.
if the -5% is applied to both resistors the Voltage is still 5V because the quotient has 5% / 5% so it cancels. to be more logic it applies the 5% just to one resistor, the resistor in this case we choose 2k but the essential is to show that the resistors usually don't have the same value. applying to the 2k resistor we have:




so.

Answer:
S = 11.025 m
Explanation:
Given,
The time taken by the pebble to hit the water surface is, t = 1.5 s
Acceleration due to gravity, g = 9.8 m/s²
Using the II equations of motion
S = ut + 1/2 gt²
Here u is the initial velocity of the pebble. Since it is free-fall, the initial velocity
u = 0
Therefore, the equation becomes
S = 1/2 gt²
Substituting the given values in the above equation
S = 0.5 x 9.8 x 1.5²
= 11.025 m
Hence, the distance from the edge of the well to the water's surface is, S = 11.025 m
Inversely proportional to its frequency. If electromagnetic radiation A has a lower frequency than electromagnetic B, then compared to B, the wavelength of A is...? - equal - shorter - longer - exactly half the length of