answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nikitadnepr [17]
2 years ago
7

A 10-kg dog is running with a speed of 5.0 m/s. what is the minimum work required to stop the dog in 2.40 s?

Physics
1 answer:
Tasya [4]2 years ago
3 0
<h3><u>Answer;</u></h3>

<em>Work = 125 joules </em>

<h3><u>Explanation and solution</u>;</h3>
  • Work is the product of force and the distance covered. Therefore, Work = force × distance.
  • Work is measured in joules.
  • Work is also a change in energy, such that work is done when energy changes, so when kinetic energy, or potential energy changes the there is work being done.

Thus; kinetic energy = work done

Kinetic energy = 1/2mv²

                       = 1/2 × 10× 5²

                       = 5 × 25

                       = 125 joules

Hence, work done is 125 joules.

You might be interested in
A thin copper rod 1.0 m long has a mass of 0.050 kg and is in a magnetic field of 0.10 t. What minimum current in the rod is nee
slamgirl [31]

Answer:

i = 4.9 A

Explanation:

Force on a current carrying rod due to magnetic field is given as

F = iLB

here we know that

i =current in the rod

B = 0.10 T

L = 1.0 m

now magnetic force is balanced by the weight of the rod

so we will have

iLB = mg

i(1.0)(0.10) = 0.05 \times 9.8

i = 4.9 A

8 0
2 years ago
A carbon-dioxide laser emits infrared light with a wavelength of 10.6 μm. What is the length of a tube that will oscillate in th
alex41 [277]

Answer:

The length of a tube and number of rounds are 0.848 m and 1.77\times10^{8}\ trip\ per\ second.

Explanation:

Given that,

Wavelength \lambda= 10.6\mu m

m = 160000

We need to calculate the length

Using formula of wavelength

Laser tube behave like closed pipe

m\dfrac{\lambda}{2}=L

L=160000\times\dfrac{10.6\times10^{-6}}{2}

L=0.848\ m

Distance traveled by pulse of light in one back and fourth trip

d=2L

d=2\times0.848

d=1.696\ m

We need to calculate the time

Using formula for time

t = \dfrac{d}{c}

t=\dfrac{1.696}{3\times10^{8}}

t=5.653\times10^{-9}\ s

We need to calculate the number of round

Using formula of number of round

N=\dfrac{1}{t}

N= \dfrac{1}{5.653\times10^{-9}}

N=1.77\times10^{8}\ trip\ per\ second

Hence, The length of a tube and number of rounds are 0.848 m and 1.77\times10^{8}\ trip\ per\ second.

7 0
2 years ago
A small rock is launched straight upward from the surface of a planet with no atmosphere. The initial speed of the rock is twice
Scorpion4ik [409]

If gravitational effects from other objects are negligible, the speed of the rock at a very great distance from the planet will approach a value of \sqrt{3} v_{e}

<u>Explanation:</u>

To express velocity which is too far from the planet and escape velocity by using the energy conservation, we get

Rock’s initial velocity , v_{i}=2 v_{e}. Here the radius is R, so find the escape velocity as follows,

            \frac{1}{2} m v_{e}^{2}-\frac{G M m}{R}=0

            \frac{1}{2} m v_{e}^{2}=\frac{G M m}{R}

            v_{e}^{2}=\frac{2 G M}{R}

            v_{e}=\sqrt{\frac{2 G M}{R}}

Where, M = Planet’s mass and G = constant.

From given conditions,

Surface potential energy can be expressed as,  U_{i}=-\frac{G M m}{R}

R tend to infinity when far away from the planet, so v_{f}=0

Then, kinetic energy at initial would be,

                  k_{i}=\frac{1}{2} m v_{i}^{2}=\frac{1}{2} m\left(2 v_{e}\right)^{2}

Similarly, kinetic energy at final would be,

                k_{f}=\frac{1}{2} m v_{f}^{2}

Here, v_{f}=\text { final velocity }

Now, adding potential and kinetic energies of initial and final and equating as below, find the final velocity as

                 U_{i}+k_{i}=k_{f}+v_{f}

                 \frac{1}{2} m\left(2 v_{e}\right)^{2}-\frac{G M m}{R}=\frac{1}{2} m v_{f}^{2}+0

                  \frac{1}{2} m\left(2 v_{e}\right)^{2}-\frac{G M m}{R}=\frac{1}{2} m v_{f}^{2}

'm' and \frac{1}{2} as common on both sides, so gets cancelled, we get as

                   4\left(v_{e}\right)^{2}-\frac{2 G M}{R}=v_{f}^{2}

We know, v_{e}=\sqrt{\frac{2 G M}{R}}, it can be wriiten as \left(v_{e}\right)^{2}=\frac{2 G M}{R}, we get

                4\left(v_{e}\right)^{2}-\left(v_{e}\right)^{2}=v_{f}^{2}

                v_{f}^{2}=3\left(v_{e}\right)^{2}

Taking squares out, we get,

                v_{f}=\sqrt{3} v_{e}

4 0
2 years ago
A father demonstrates projectile motion to his children by placing a pea on his fork's handle and rapidly depressing the curved
MariettaO [177]

Answer:

4.17 m/s

Explanation:

To solve this problem, let's start by analyzing the vertical motion of the pea.

The initial vertical velocity of the pea is

u_y = u sin \theta = (7.39)(sin 69.0^{\circ})=6.90 m/s

Now we can solve the problem by applying the suvat equation:

v_y^2-u_y^2=2as

where

v_y is the vertical velocity when the pea hits the ceiling

a=g=-9.8 m/s^2 is the acceleration of gravity

s = 1.90 is the distance from the ceiling

Solving for v_y,

v_y = \sqrt{u_y^2+2as}=\sqrt{(6.90)^2+2(-9.8)(1.90)}=3.22 m/s

Instead, the horizontal velocity remains constant during the whole motion, and it is given by

v_x = u cos \theta = (7.39)(cos 69.0^{\circ})=2.65 m/s

Therefore, the speed of the pea when it hits the ceiling is

v=\sqrt{v_x^2+v_y^2}=\sqrt{2.65^2+3.22^2}=4.17 m/s

5 0
2 years ago
Each shot of the laser gun most favored by Rosa the Closer, the intrepid vigilante of the lawless 22nd century, is powered by th
mote1985 [20]

Answer:

U = 1794.005 × 10⁶ J

Explanation:

Data provided;

Capacitance of the original capacitor, C = 1.27 F

Potential difference applied to the original capacitor, V = 59.9 kV

= 59.9 × 10³ V

Now,

The Potential energy (U) for the capacitor is calculated as:

Potential energy of the original capacitor, U = \frac{\textup{1}}{\textup{2}}  × C × V²

on substituting the respective values, we get

U = \frac{\textup{1}}{\textup{2}}  × 1.27 × ( 59.9 × 10³ )²

or

U = 1794.005 × 10⁶ J

7 0
2 years ago
Other questions:
  • On a dry day, just after washing your hair to remove natural oils and drying it thoroughly, run a plastic comb through it. Small
    15·1 answer
  • A charge of 8.4 × 10–4 C moves at an angle of 35° to a magnetic field that has a field strength of 6.7 × 10–3 T. If the magnetic
    16·1 answer
  • Two loudspeakers in a plane, 5.0m apart, are playing the same frequency. If you stand 14.0m in front of the plane of the speaker
    14·1 answer
  • After a 60-kg person steps from a boat onto the shore, the boat moves away with a speed of 0.60 m/s with respect to the shore. I
    13·1 answer
  • A high-jumper, having just cleared the bar, lands on an air mattress and comes to rest. Had she landed directly on the hard grou
    14·1 answer
  • A non-uniform rod 60cm long and weighs 32N is balanced at the 45cm mark. A load of 2N is hung on the zinc rod at the 25cm mark.
    11·1 answer
  • A student decides to spend spring break by driving 50 miles due east, then 50 miles 30 degrees south of east, then 50 miles 30 d
    5·1 answer
  • A 30-m-long rocket train car is traveling from Los Angeles to New York at 0.5c when a light at the center of the car flashes. Wh
    6·1 answer
  • Which type of speed does the following scenario depict?
    15·1 answer
  • 1 Which requires more work, lifting a 10kg sack of<br> coal or lifting a 15kg bag of feathers?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!