From the items on this list, the only one that allows calculation
of the mechanical advantage is 'B' ... the lengths from the fulcrum
to the effort and the resistance.
The MA can also be calculated when you know the two forces ...
the effort and the resistance ... when the lever is just balanced.
The answer is reverse faults.
Answer:
625000 N/ m
Explanation:
m= 20 kg
v= 30 m/s
x= 12 cm
k = ?
Here when the mass when hits at spring its speed is
Vi= 30 m/s
Finally it comes to rest after compressing for 12 cm
i-e Vf = 0 m/s
Distance= S= 12 cm = 0.12 m
using
2aS= Vf2 - Vi2
==> 2a ×0.12 = o- 30 × 30
==> a = 900 ÷ 0.24 = 3750 m/sec2
Now we know;
F = ma
F= -Kx
==> ma= -kx
==> 20 × 3750 = -K × 0.12
==> k = 625000 N/ m
Answer:

Explanation:
Given:
- spring constant of the spring attached to the input piston,

- mass subjected to the output plunger,

<u>Now, the force due to the mass:</u>



<u>Compression in Spring:</u>



or
